Supporting Information

Pyridoxal-derived a new gelator for selective recognition of CN⁻ and F⁻ under different conditions

Subhasis Ghosh, Nabajyoti Baildya and Kumaresh Ghosh*

Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: <u>ghosh_k2003@yahoo.co.in</u>; kumareshchem18@klyuniv.ac.in

Table 1S: Summary of gel property of compound 1 in different solvents

Solvents	Results		
DMF	S		
DMF:H ₂ O(10:1, v/v)	G(7 mg/mL)		
DMSO	S		
DMSO:H ₂ O(10:1, v/v)	G(7 mg/mL)		
CHCl ₃ :CH ₃ OH	S		
CHCl ₃	Ι		
Benzene	Ι		
Toluene	Ι		
Nitrobenzene	Ι		
CH ₃ CN	Ι		
THF	Ι		
1,4-Dioxane	S		
1,4-Dioxane:H ₂ O	Ι		

S = Soluble, G = Gel, I = Insoluble

Figure 1S. Plots showing variation of conc. (mg/mL) of 1 vs T_{gel} (°C) vs Time (min) taken for gel formation.

Figure 2S. Partial FTIR spectra of compound 1 (i) in amorphous and (ii) gel states.

Figure 3S: (a) Optimized geometry of 1-dimer in DMF-H₂O, (b) UV-Vis spectra of 1-dimer in DMF-H₂O, and (c) Optimized geometry 1-tetramer in DMF without H₂O molecules.

Table 2S. Simulated absorption wavelengths (λ_{max}), oscillator strengths (*f*), and the composition of the corresponding electronic transitions (H = HOMO; L = LUMO) calculated using B3LYP/6-31g(d) level of theory.

Compound	λ_{max}	f	3	Main compositions
	(nm)		(104)	(contribution)
1- in DMF-H₂O	421	0.80	2.37	H→L (99%)
	(397)ª			
1-aggregated	427	0.46	2.34	H-1→L+2 (76%)
in DMF-H ₂ O	(406) ^a			
1-dianionic in	490	0.98	2.04	H→L (99%)
DMF-H ₂ O	(500)ª			
1-	498	0.89	2.01	H→L (100%)
monoanionic in	(500)ª			
DMF-water				

*a indicates the experimental values

Figure 4S. Rheological studies of the gel of **1** with 1 equivalent amounty of F^- ion: (a) amplitude sweep (at constant frequency of 1Hz) and (b) frequency sweep (at constant 0.1% strain) experiments [gel was prepared at its cgc in DMF/H₂O (10:1, v/v)].

Table 3S. Summary of rheological properties of the F⁻ treated gel of 1.

Figure 5S. Photograph showing the minimum amount of CN⁻ needed to break the gel of **1** [7 mg dissolved in 1 mL of DMF: $H_2O(10:1, v/v)$; $c = 2.08 \times 10^{-2} M$].

pH < 2 pH = 2-11.5 pH > 12.5

Figure 6S. Photograph showing the phase change with pH.

Figure 7S: UV-vis spectra of 1 ($c = 2.5 \times 10^{-5} \text{ M}$) to distinguish CN⁻ from F⁻ through addition of H₂O.

Figure 8S. Photograph showing Selectivity of 1 ($c = 2.5 \text{ x } 10^{-5} \text{ M}$) for CN⁻ ion in DMF: H₂O (10:1, v/v).

Figure 9S. The change in (a) color, (b) absorbance and (c) emission of compound $1(c = 2.5 \times 10^{-5} \text{ M})$ with variation of pH.

Figure 10S. Benesi–Hildebrand plots for 1 with (a) CN⁻ and (c) F⁻ and detection limits of 1 (c = 2.5×10^{-5} M) with (b) CN⁻ and (d) F⁻ (c = 1.0×10^{-3} M) in DMF: H₂O (10:1, v/v) by considering absorbance change at 494 nm.

Figure 11S: FTIR spectra of: (i) 1, (ii) Merrifield resin and (iii) 1 hooked to Merrifield resin (1a).

¹H NMR of compound **1** in d₆-DMSO (400 MHz)

Mass spectra of Compound 1

¹H NMR of compound **4** in $CDCl_3$ (400 MHz)

¹³C NMR of compound **4** in CDCl₃ (100 MHz)

¹H NMR of compound **3** in CDCl₃ (400 MHz)

