Sustainable utilization of natural sands for cleaner preparation of high-

performance nanostructured cobalt blue composite pigments by dolomite-

induced mechanochemistry

Hao Yang ^{a,b}, Bin Mu ^{a,b*}, Tenghe Zhang ^{a,b}, Yushen Lu ^a, Aiqin Wang ^{a,b*}

^a Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-

material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese

Academy of Sciences, Lanzhou 730000, P. R. China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^{*}Corresponding authors. E-mail addresses: mubin@licp.cas.cn (B. Mu), aqwang@licp.cas.cn (A.

Wang); Fax: +86 931 4068019; Tel: +86 931 4868118.

Figure S1 Digital images of ZPS, ZPS-A, HMS and HMS-A.

Figure S2 XRD patterns of ZPS and HMS as well as corresponding PDF card

Figure S3 XRD pattern of dolomite and corresponding PDF card

Figure S4 High-resolution XPS spectra of (a) Ca2p and (b) Mg1s of dolomite.

Composition	CaO	MgO	SiO ₂	Fe ₂ O ₃	CO ₂
Wt%	58.19	30.143	1.303	0.298	10

Table S1 XRF chemical compositions (wt%) of the involved dolomite

_

Table S2 XRF chemical compositions (wt%) of ZPS and HMs before and after acid

treatment									
Samples	Acid treatment	SiO ₂	Al ₂ O ₃	Na ₂ O	K ₂ O	MgO	CaO	Fe ₂ O ₃	CO ₂
ZPS	Before	88.354	-	0.105	0.731	-	-	0.561	10
	After	87.249	1.938	-	0.569	-	-	-	10
HMS	Before	73.282	9.162	2.500	1.916	0.482	1.143	1.307	10
	After	74.979	8.796	2.503	1.948	0.183	0.959	0.507	10

Table S3 The chroma parameters of $CoAl_2O_4$ pigments compared between this	study	Į
---	-------	---

		Calcination	Calcination Chroma parameters					
Samples	Synthetic methods	temperature	L^*	<i>a</i> *	b^*	C^*	Reference	
CP-D/CB/ZPS	Mechanochemistry	1100°C	46.39	1.45	-48.12	48.15	This study	
CP-D/CB/ZPS-A	Mechanochemistry	1100°C	42.97	4.56	-50.30	50.50	This study	
CP-D/CB/HMS	Mechanochemistry	1100°C	44.55	0.19	-45.69	45.69	This study	
CP-D/CB/HMS-A	Mechanochemistry	1100°C	42.59	3.38	-49.60	49.72	This study	
Pure CoAl ₂ O ₄	Mechanochemistry	1100°C	29.36	-8.28	-28.22	28.02	House-made	
CoAl ₂ O ₄	-	-	39.70	-1.22	-44.63	44.65	Commercial	
Hibonite Blue	Solid phase	1350-1500°C	44.94	3.95	-42.24	42.24	[14]	
CoAl ₂ O ₄ /Al ₂ O ₃	Co-precipitation	1100°C	34.28	-2.87	-49.79	49.87	[16]	
CoAl ₂ O ₄ /TiO ₂	Co-precipitation	1100°C	54.32	-3.79	-44.16	44.32-	[34]	
CoAl ₂ O ₄	Electrospinning	1000°C	50.59	-12.30	-40.98	42.78	[35]	
CoAl ₂ O ₄	Combustion	100000	57.10	1.00	24.02	24.00	[36]	
	synthesis	1000-C	57.19	-1.99	-34.03	34.09		
CoAl ₂ O ₄	Hhydrothermal	1100%	47.21	10.22	27.60	41.83	[27]	
	process	1100°C	4/.31	-18.32	-37.00		[3/]	

and other reports

Samplas	Fine	Pinding anarow (aV) and assignment		
Samples	spectra	Binding energy (ev) and assignment		
ZPS-A	Si2p	103.39 (Si-O), 102.14 (Si-O ₂)		
Dolomite	Ca2p	351.40, 347.72 (dolomite)		
	Mg1s	1304.28 (dolomite)		
Pure CoAl ₂ O ₄	Co2p	781.53, 786.14, 797.07, 803.13 (CoAl ₂ O ₄)		
	Al2p	74.26 (Al _{VI}), 73.71 (Al _{IV})		
	Co2p	779.81, 787.07, 797.17, 803.27 (Co ₃ O ₄)		
	Al2p	75.06 (Al ₂ O ₃)		
Pre-D/CB/ZPS-	Ca2p	348.42, 352.13 (Ca(NO ₃) ₂)		
А	Mg1s	1304.11 (Mg(NO ₃) ₂)		
	Si2p	102.07 (SiO ₂ ·Al ₂ O ₃), 103.07 (quartz)		
	N1s	407.83 (NO ₃ ⁻), 400.13 (N-O-M)		
D/CB/ZPS-A	Co2p	781.77, 786.86, 797.34, 803.13 (CoAl ₂ O ₄)		
	Al2p	75.07 (CaAl ₂ O ₄), 74.44 (Al _{VI}), 73.78 (Al _{VI})		
	Ca2p	347.69, 348.60, 351.51, 352.03 (CaAl ₂ O ₄)		
	Mg1s	1304.00 (MgAl ₂ O ₄)		
	Si2p	102.12 (Si-O-Al), 102.84 (quartz)		

 Table S4 The binding energy of the fine spectra as well as corresponding assignment