Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Ni-promoted MoS₂ in Hollow Zeolite Nanoreactors: Enhanced Catalytic activity and stability for Deep Hydrodesulfurization

Xin Kang, Dongxu Wang, Jiancong Liu* Chungui Tian, He Xu, Jialu Xu and Honggang Fu*

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University. Harbin 150080, P. R. China.

Email: fuhg@hlju.edu.cn, fuhg@vip.sina.com, jiancong@gmail.com.

The content of ESI

1. Figure S1. SEM images of ZSM-5 after NaOH aqueous solution treatment for different times: 0 min (a), 15 min (b), 45 min (c) and 60 min (d).

2. Figure S2. Wide-angle XRD of ZSM-5 zeolite with different alkaline solution treatment time (0 min, 15 min, 45 min and 60 min).

3. Figure S3. Pore size distribution of Hol-ZSM-5 zeolite

4. Figure S4. Pore size distribution of ZSM-5 zeolite

5. Figure S5 The EDS mapping for Si and Mo elements in NiMoS_X/Hol-ZSM-5 catalyst.

6. Figure S6. XPS survey spectra of the NiMoS_X/Hol-ZSM-5 and NiMoS_X/ZSM-5 catalysts. The

NiMoS_X/Hol-ZSM-5 catalyst EDS mapping for Si and Mo elements.

7. Figure S7. TEM images of NiMoS_X/Hol-ZSM-5 catalyst after HDS catalysis testing for 80 h.

8. Table S1. Textural parameters of Hol-ZSM-5 and ZSM-5 supports.

9. Table S2. Ni 2p XPS spectra of NiMoS_X/Hol-ZSM-5 and NiMoS_X/ZSM-5 catalysts.

10. Table S3. Mo 3d XPS spectra of NiMoS_X/Hol-ZSM-5 and NiMoS_X/ZSM-5 catalysts.

11. Table S4. DBT HDS performance over $NiMoS_X/Hol-ZSM-5$ and $NiMoS_X/ZSM-5$ catalysts.

Figure S1. SEM images of ZSM-5 after 0.2 M NaOH aqueous solution treatment for different times: 0 min (a), 15 min (b), 45 min (c) and 60 min (d).

Figure S2. Wide-angle XRD of ZSM-5 zeolite with different alkaline solution treatment time (0

min, 15min, 45min and 60min).

Figure S3. Pore size distribution of Hol-ZSM-5 zeolite

Figure S4. Pore size distribution of ZSM-5 zeolite

Figure S5. The EDS mapping for Si and Mo elements in $NiMoS_X/Hol-ZSM$ -5 catalyst.

Figure S6. XPS survey spectra of the NiMoS_X/Hol-ZSM-5 and NiMoS_X/ZSM-5 catalysts.

Figure S7. TEM images of $NiMoS_X/Hol-ZSM-5$ catalyst after HDS catalysis testing for 80 h.

Sample	$\begin{array}{c} S_{BET} \\ (m^2g^{\text{-}1})^{a} \end{array}$	V _{Total} (cm ³ g ⁻¹) ^b	V _{Micro} (cm ³ g ⁻¹) ^c	Average pore width (nm) ^d
ZSM-5	536.6	0.614	0.098	0.56
Hol-ZSM-5	332.4	1.327	0.033	27.4

Table S1. Textural parameters of Hol-ZSM-5 and ZSM-5 supports.

^a BET Surface area
^b Total pore volume, P/P₀ = 0.989
^c t-Plot method
^d DFT pore diameter

	NiS _X		NiMoS _X		NiO	NiO	
Catalysis	BE (eV)	ar.%	BE (eV)	ar.%	BE (eV)	ar.%	
NiMoS _X /Hol-ZSM-5	852.5±0.1	10.03	855.9±0.1	82.06	860.1±0.1	7.91	
NiMoS _X /ZSM-5	852.5±0.1	10.62	855.9±0.1	73.36	860.1±0.1	16.02	

Table S2. Ni 2p XPS spectra of $NiMoS_X/Hol-ZSM-5$ and $NiMoS_X/ZSM-5$ catalysts.

	Mo ⁴⁺		Mo ⁵⁺		M0 ⁶⁺		
Catalysts BF (eV)	ar.%	ar.%	ar.%	ar.%	ar.%	ar.%	_
	229.3	232.3	231.2	234.6	233.3	236.3	$\mathbf{S}_{\mathrm{Mo}}{}^{\mathrm{b}}$
	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	± 0.1	
NiMoS _X /Hol-ZSM-5	51.69	33.53	1.26	0.84	7.59	5.09	85.22%
NiMoS _X /ZSM-5	45.07	27.32	14.26	10.31	2.28	0.76	72.39%

Table S3. Mo 3d XPS spectra of NiMoS_X/Hol-ZSM-5 and NiMoS_X/ZSM-5 catalysts.

 a ar.% indicates the area percent of XPS peak. b S_{Mo} = $Mo_{sulfidation}$ = $Mo^{4+}/(Mo^{4+}+Mo^{5+}+Mo^{6+})$

				Produ			
				HYD)	DDS	
Catalys	its	Conversion ^a (%)	$k_{\rm HDS}$ (mol·g ⁻¹ ·s ⁻¹)	DCH	CHB	BP	DDS/HYD ratio
NiMoS _X /Hol	-ZSM-5	30.26	18.74×10 ⁻⁷	0.19	2.57	97.24	35.23
NiMoS _X /Z	SM-5	29.89	5.54×10 ⁻⁷	2.25	17.46	80.29	4.74

Table S4. DBT HDS performance of $NiMoS_X/Hol-ZSM$ -5 and $NiMoS_X/ZSM$ -5 catalysts.

^aThe DBT HDS conversion was obtained by changing the WHSV (330 °C, 4 MPa, hydrogen-oil ratio of 600). ^bDefinition at a total DBT conversion of 30% by changing the WHSV.