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Figure S1. (a) The SEM of the NN platelet template; (b) The details of XRD patterns
of the texture ceramics around 45°.

It is well known that the texture degree of the KNN-based textured ceramics is
severely affected by the quantity and quality of the added NN template, the complexity
of the phase composition, the sintering temperature, the holding time as well as the tape
casting process. For the same O-T phase coexistence, the texture degree (fy) of the
KNNTa-BNN ceramics is higher than the previous experimental results,'” which is
inseparable from the added high-quality NN platelet template and its suitable content
(4 wt.%).

It is well known that the piezoelectric performance of KNN-based ceramics is
especially sensitive to the perovskite phase structure, which can be quantified by
assessing relative intensities of (002) and (200) peaks.® As x increases from 0 to 15, the
intensity of the (200) peak gradually increases, indicating that the content of the T phase
of both of the random and texture ceramics gradually increases, which is consistent

with the result of Raman spectroscopy and the temperature-dependent dielectric
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constants and losses (Fig. S3). When x = 15, the (200) peak intensity of the texture
ceramic exceeds (002), indicating the transition from O phase dominance to T phase

dominance (Fig. S1b).
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Figure S2. The free surface SEM images of the random (al-fl) and texture (a2-f2)
ceramics; The cross-sectional SEM images of the random (gl-h1) and (g2-h2) texture
ceramics.

It is found that initial nucleation of textured grains at template-matrix interface
begins at ~850°C, accelerating as temperature increases, templates and matrix react via
inter-diffusion.* Therefore, as the holding time increases, the KNN matrix powder
grows along the template so that the thickness and width of the template gradually
increase, and finally large-sized oriented grains are formed, which are much larger than

that of random ceramics.
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Figure S3. Temperature-dependent dielectric constants and losses curves of the random

(a) and texture (b) ceramics; Room temperature Raman spectrum of the random (c) and

texture (d) ceramics.

On the one hand, there are more PNRs exist in the random ceramics, which are
less stable than the large-scale long-range ferroelectric domains of the textured
ceramics, hence, its Curie temperature is lower than that of the textured ceramics. On
the other hand, the presence of PNRs makes the 7.7 and T ¢ of the random ceramics
more relaxor, which dielectric peaks are dispersed and broadened, and requiring a
certain relaxation time during phase transition, thus presenting a higher phase transition

temperature (Fig. S6). Therefore, the textured ceramics exhibit higher 7 and lower
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Figure S4. Temperature-dependent dielectric constants and losses at low temperature

of the random (a) and texture (b, ¢) ceramics.
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Figure S5. High-resolution TEM and the corresponding diffraction patterns of the Ta-
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Figure S6. TEM images of Ta-6 (a, b) and T-Ta-9 (c); PFM phase images of the random
(d-f) and texture (g-1) ceramics.

As shown in Fig. 3a and Fig. S6a and b, the fine grains (< 0.4 um) accompanied
by an abundance of nano-microdomains and polar nanoregions (PNRs) can be seen in

the random ceramics (i.e., Ta-6). In contrast, except for the few remaining nano-



microdomains (Fig. 3d), various large-scale domains with regular morphology can be
seen in the texture ceramics (i.e., T-Ta-9), including parallel strip-shaped domains
(180°) in the size range of 0.5-2.5 um, fish-bone domains (45°) and large-area labyrinth
domains (90°) (Figs. 3b-d, 5¢ and Fig. Séc), which are attributed to the large-sized
<00I>c oriented grains, thereby improving the piezoelectric properties of texture

ceramics.
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Figure S7. Schematic diagram of the domain structure evolution for (a) KNN-BNN

matrix, (b) KNNTa-BNN random ceramics and (¢) KNNTa-BNN texture ceramics.

10



180.000

-180.000

Figure S8. Poling patterns in PFM phase images of (a) Ta-0, (b) Ta-6 and (c) Ta-9 via

applying +10 V/-10 V DC tip biases.
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Figure S9. Poling patterns in PFM phase images of T-Ta-0 (a) and T-Ta-4 (b) via

applying +10 V DC tip biases.
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Figure S10. /-E loops, bipolar strain curves and unipolar strain curves and of the

random (a-c) and texture (d-f) ceramics.
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Figure S11. (a-f) Impedance Z and phase angle 0 against frequency of the random

ceramics measured at room temperature.
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Figure S12. (a-g) Impedance Z and phase angle 6 against frequency and (h) the

calculated Q,, of the texture ceramics measured at room temperature.
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Figure S13. In-situ temperature-dependent unipolar strain curves of (a)T-Ta-9 and (b)

T-Ta-15.

16




(a)

380 °C
| (b)l 4
| - :
| !
| { i
p : | I
— N\ 170°C_~

100 °

o
;

i

-1
=1

o
e

oy

-90 °C

e

240 480 720 : 240 600 :
Raman shift (cm ) Raman shift (cm )

Figure S14. (a) In-situ variable temperature Raman spectrum for T-Ta-9; (b) The
corresponding enlarged details of /n-situ variable temperature Raman spectrum around

200 cm™ and 600 cm!.
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Figure S15. Partial preparation process of the T-Ta-9 PCD vibration energy harvester
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