Formation Mechanism of Voids and Pin-holes in CuSbS₂ Thin Film

via Sulfurizing Co-sputtered Cu-Sb Precursor

Yuanfang Zhang, Jialiang Huang*, Pengfei Zhang, Jialin Cong, Jianjun Li and Xiaojing Hao*

Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Fig S1 Temperature profiling of sulfurization process and photographs of samples as indicated on temperature profiling.

Samples	Compositions	PDF Cards #
Precursor	Cu Cu2Sb	01-070-3038 01-085-0492
	Sb	01-085-1322
200 °C	$egin{array}{c} { m Cu} & \ { m Cu_2S} & \ { m Cu_2Sb} & \ { m Sb} & \ \end{array}$	01-070-3038 00-002-1284 01-085-0492 01-085-1322
250 °C	CuS Sb	00-024-0060 01-085-1322
300 °C	CuS Sb_2S_3 Sb	00-024-0060 01-075-1310 01-085-1322
350 ℃	$\begin{array}{c} CuS\\ Sb_2S_3\\ Sb\end{array}$	00-024-0060 01-075-1310 01-085-1322
370 °C	$\begin{array}{c} CuS\\ CuSbS_2\\ Sb_2S_3 \end{array}$	00-024-0060 03-065-2416 01-075-1310
380 °C	$CuSbS_2$ Sb_2S_3	03-065-2416 01-075-1310
380 °C-3min	$CuSbS_2$ Sb_2S_3	03-065-2416 01-075-1310

Table S1 Summary of phase evolution of Cu-Sb co-sputtering precursor after being sulfurized at a series of temperatures and times.

Fig S2 SEM and corresponding EDS mapping images of Cu-Sb precursor after sulfurization treatment at 350 °C followed by rapid cooling.

Fig S3 Microscopy analysis of Cu-Sb precursor after sulfurization treatment at 250 °C followed by rapid cooling, (a) cross-section TEM image, (b) STEM-EDS mapping, (c) phases mapping, (d) STEM-EDS line scan as arrow marked in (c), (e) SEM image of exfoliated backside surface.

Fig. S4 Schematic diagram of the thin film morphology and the corresponding Pillings-Bedworth ratio.

For a general solid reaction,

$$aA_{(s)} + b B_{(s)} \rightarrow c C_{(s)} + d D_{(s)}$$

the $\ensuremath{\text{PB}_{\text{ratio}}}$ can then be expressed as

$$PB_{ratio} = \frac{\sum_{i} v_i [M_i / \rho_i]_{product}}{\sum_{i} v_i [M_i / \rho_i]_{reactant}}$$

where *i* denotes the compound, v_i is the stoichiometric coefficient of *i*, M_i represents the molar mass of *i* in (g/mol), and ρ_i is the density of *i* in (g/cm³).

	ρ (g/cm ³)	M (g/mol)	Reaction	PB-ratio
Cu	8.96	63.546		
Sb	6.697	121.76		
S	2.07	32.066		
Cu_2S	5.6	159.158	$2Cu + S(g) \rightarrow Cu_2S$	2.00
CuS	4.76	95.611	$Cu + S(g) \rightarrow CuS$	2.83
Sb_2S_3	4.562	339.715	$2Sb + 3S(g) \rightarrow Sb_2S_3$	2.05
$CuSbS_2$	4.87	249.43	$2CuS + Sb_2S_3 \rightarrow 2CuSbS_2 + S(g)$	0.89
			$2Cu + Sb_2S_3 \rightarrow 2CuSbS_2$	1.16
			$Cu_2S + Sb_2S_3 \rightarrow 2CuSbS_2$	1

 Table S2 Densities and molar masses for the various elements and compounds, as well as the Pillings

 Bedworth ratios calculated for the given reactions.

Fig S5 Microscopy analysis of Cu-Sb precursor after sulfurization treatment at 380 °C followed by rapid cooling, (a) cross-section TEM image, (b) STEM-EDS mapping, (c) phases mapping, (d) STEM-EDS line scan as arrow marked in (c).

Sample ID	Cu/Sb	Sb loss (%)
precursor	0.889	N/A
350 °C	0.896	0.713
380 °C	0.904	1.630
380 °C-3min	0.906	1.796

Table S3 Composition changes of $CuSbS_2$ thin films subjected to different sulfurization treatments measured by ICP.