Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

"Double-Sided Tape" Modifier Bridging TiO₂/Perovskite Buried Interface for Efficient and Stable All-Inorganic Perovskite Solar

Cells

Junjie Ti,^{a,1} Jingwei Zhu,^{a,1} Benlin He,*a Zhihao Zong,^a Xinpeng Yao,^a Rui Tui,^a Hao Huang,^d Cong Chen,^e Haiyan Chen,^a Yanyan Duan^c and Ounwei Tang*^b

^a School of Materials Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, P.R. China

^b College of Information Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, P.R. China

^c State Centre for International Cooperation on Designer Low-Carbon and

Environmental Material (SCICDLCEM), School of Materials Science and

Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China

^d Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured

Materials, School of Resources, Environment and Materials, Guangxi University,

Nanning 530004, China

^e College of Materials Science and Engineering & Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China ¹ The authors contributed equally to this work.

* Corresponding Authors. E-mail: blhe@ouc.edu.cn, tangqunwei@jnu.edu.cn

Fig. S1. The chemical structural formula of DAP.

Fig. S2. FTIR spectra of P-O bond for DAP and TiO_2/DAP samples.

Fig. S3. The dark J-V curves of ETL-only devices with a structure of FTO/TiO₂/with and without DAP/Carbon.

Fig. S4. The transmission spectra of $\rm TiO_2$ and $\rm TiO_2/DAP$ films.

Fig. S5. The average grain size distribution statistical histogram of perovskite films deposited on various TiO_2 layers.

Fig. S6. UV-vis absorption spectrums of perovskite films deposited on various TiO_2 ETLs.

Fig. S7. The steady-state PL spectra excited from air side of perovskite films directly deposited on various glass substrates.

Fig. S8. Ultraviolet photoelectron spectra (UPS) and the curves of $(Ahv)^2$ as a function of hv for various TiO₂ films.

Fig. S9. The $J^{1/2}$ -V curves of electron-only devices with a structure of FTO/TiO₂/without or with DAP/perovskite/PCBM/carbon.

Fig. S10. The *J*-*V* curves under forward and reverse scan directions of the control and optimized PSCs.

Fig. S11. IPCE spectra and integrated current density of various devices.

Fig. S12. Statistical distribution of (a) PCE, (b) V_{OC} , (c) J_{SC} and (d) FF for thirty random control and optimized CsPbBr₃ PSCs.

Fig. S13. TPV curves of various CsPbBr₃ PSCs under 0.3 sun illumination.

Samples	$V_{\mathrm{TFL}}\left(\mathrm{V} ight)$	$N_{\rm t} (10^{17}{\rm cm}^{-3})$
Pristine	2.079	5.69
DAP-0.1	1.768	4.76
DAP-0.2	1.671	4.52
DAP-0.5	1.864	5.01
DAP-1	1.985	5.37

Table S1. The electron trap state density of TiO_2 films with and without DAP modification.

Samples	$V_{\mathrm{TFL}}\left(\mathbf{V} ight)$	$N_{\rm t} (10^{16}{\rm cm}^{-3})$	$\mu_{\rm e} (10^{-4}{\rm cm}^2{ m V}^{-1}{ m s}^{-2})$
Pristine	1.635	2.06	4.52
DAP-0.1	1.356	1.71	8.41
DAP-0.2	1.291	1.62	11.7
DAP-0.5	1.444	1.83	7.12
DAP-1	1.541	1.95	5.48

Table S2. The electron trap state density and electron mobility of $CsPbBr_3$ films deposited on various TiO_2 ETLs.

Devices	$J_{ m SC}$	V _{OC}	FF	PCE	Pof	
Devices	(mA cm ⁻²)	(V)	(%)	(%)	Kel.	
FTO/c-TiO ₂ /m-	7.57	1.621	84.05	10.31	This	
TiO ₂ /DAP/CsPbBr ₃ /Carbon					work	
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ / Carbon	7.40	1.220	84.10	7.37	1	
$FTO/c\text{-}TiO_2/m\text{-}TiO_2/GQDs/CsPbBr_3/$	0.12	1.458	82.1	9.72	2	
Carbon	8.12					
FTO/TiO ₂ /CsPbBr ₃ /SiQDs/spiro-	7.90	1.420	75.00	8.31	2	
OMeTAD/Ag	/.80				3	
TiO ₂ /CsPbBr ₃ /Cu(Cr,Ba)O ₂ NCs/	7.01	1 (20	95 50	10.70	4	
Carbon	/.01	1.020	85.50	10.79	4	
FTO/TiO ₂ /PTI-CsPbBr ₃ /spiro-	9.78	1.490	74.47	10.91	5	
OMeTAD/Ag					3	
FTO/c-TiO ₂ /CsPbBr ₃ /CsPbBr ₃ -	0.24	1 161	75.20	10.17	C	
$CsPb_2Br_5/CsPbBr_3\text{-}Cs_4PbBr_6/Carbon$	9.24	1.401	/3.39	10.17	0	
FTO/Sb-TiO ₂ /CsPbBr ₃ /Carbon	6.70	1.654	80.40	8.91	7	
FTO/TiO ₂ -AC/CsPbBr ₃ /ZnPc/Carbon	7.64	1.606	82.47	10.12	8	
FTO/L-TiO ₂ :MoSe ₂ /CsPbBr ₃ /Carbon	6.70	1.615	78.70	10.02	9	
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ /Carbon	7.13	1.380	62.0	6.10	10	
$FTO/c-TiO_2/m-TiO_2/Sm^{3+}-$	7 10	1 504	95 10	10.14	11	
CsPbBr ₃ /Carbon	/.48	1.594	85.10	10.14	11	

Table S3. Summary of the parameters of CsPbBr₃ PSCs with champion PCE.

$FTO/c\text{-}TiO_2/m\text{-}TiO_2/Sr^{2+}\text{-}CsPbBr_3/$	7.71	1.540	81.10	9.63	12
Carbon					
FTO/TiO ₂ /CQD-CsPbBr ₃ IO/Spiro-	11 34	1 060	69.00	8 29	13
OMeTAD/Au	11.5 1	1.000	09.00	0.29	15
FTO/c-TiO ₂ /CsPbBr ₃ /Carbon	6.89	1.49	79.0	8.11	14
FTO/c-TiO ₂ /CsPbBr ₃ /Ti ₃ C ₂ -MXene/	8 54	1 444	73.08	9.01	15
Carbon	0.54	1.777	75.00	9.01	15
FTO/c-TiO ₂ /CsPbBr ₃ /spiro-	5 60	1 500	62.00	5 40	16
OMeTAD/Au	5.00	1.500	02.00	5.40	10
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ +L-	7 64	1 565	81.0	9.68	17
lysine/Carbon	7.04	1.505	01.0	2.00	17
$FTO/c\text{-}TiO_2/m\text{-}TiO_2/Sn^{2+}\text{-}CsPbBr_3/$	7 66	1 370	82.22	8 63	18
Carbon	7.00	1.570	02.22	0.05	10
FTO/TiO ₂ /CsPbBr ₃ /MnS/Carbon	8.28	1.520	83.00	10.45	19
FTO/c-TiO ₂ /m-	7 45	1.610	<u>83 00</u>	0.02	20
TiO ₂ /CsPbBr ₃ /[BMMIm]Cl/Carbon	/.43	1.010	03.00	7.74	20

Samples	$\tau_{\rm ave} ({\rm ns})$	τ_1 (ns)	A_1 (%)	τ_2 (ns)	A_2 (%)
Pristine	0.78	0.69	54.33	13.95	45.67
DAP-0.1	0.26	0.37	62.85	7.63	37.15
DAP-0.2	0.15	0.22	61.92	5.31	38.08
DAP-0.5	0.34	0.45	63.36	8.74	36.64
DAP-1	0.52	0.61	64.18	10.96	35.82

Table S4. The carrier lifetime parameters of perovskite films deposited on various TiO_2 ETLs.

The TRPL attenuation curve is fitted with a double exponential decay function: $I = A_1 e^{-(\tau 1-\tau 0)/\tau 1} + A_2 e^{-(\tau 1-\tau 0)/\tau 2}$ to obtain the carrier lifetime, where τ_1 represents the faster defect-related non-radiation recombination, τ_2 represents the slower radiation recombination part.²¹ Through the following formula: $\tau_{ave} = (A_1\tau_1^2 + A_2\tau_2^2)/(A_1\tau_1 + A_2\tau_2)$, the average lifetime (τ_{ave}) of photogenerated carriers can be obtained.

Devices	$R_{\rm s}$ (Ω cm ²)	$R_{ m rec} \left(\Omega \ { m cm}^2 ight)$
Pristine	16.37	52.71
DAP-0.1	11.02	91.23
DAP-0.2	6.94	109.82
DAP-0.5	14.06	81.26
DAP-1	14.80	72.83

Table S5. EIS parameters of CsPbBr₃ PSCs with and without DAP modifier.

References

- D. Huang, P. Xie, Z. Pan, H. Rao and X. Zhong, J. Mater. Chem. A, 2019, 7, 22420-22428.
- J. Duan, Y. Zhao, B. He and Q. Tang, Angew. Chem., Int. Ed. Engl., 2018, 57, 3787-3791.
- S. Zhou, R. Tang, H. Li, L. Fu, B. Li and L. Yin, J. Power Sources, 2019, 439, 227065.
- J. Duan, Y. Zhao, Y. Wang, X. Yang and Q. Tang, *Angew. Chem., Int. Ed.*, 2019, 58, 16147-16151.
- G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu, Y. Dang, W. Song, L. K. Ono, Y. Jiang and Y. Qi, *Nano Energy*, 2019, 65, 104015.
- G. Tong, T. Chen, H. Li, W. Song, Y. Chang, J. Liu, L. Yu, J. Xu, Y. Qi and Y. Jiang, *Sol. RRL*, 2019, 3, 1900030.
- Y. Xu, J. Duan, X. Yang, J. Du, Y. Wang, Y. Duan and Q. Tang, *J. Mater. Chem.* A, 2020, 8, 11859-11866.
- J. Zhu, M. Tang, B. He, W. Zhang, X. Li, Z. Gong, H. Chen, Y. Duan and Q. Tang, J. Mater. Chem. A, 2020, 8, 20987-20997.
- Q. Zhou, J. Du, J. Duan, Y. Wang, X. Yang, Y. Duan and Q. Tang, J. Mater. Chem. A, 2020, 8, 7784-7791.
- J. Liu, L. Zhu, S. Xiang, Y. Wei, M. Xie, H. Liu, W. Li and H. Chen, Sustain. Energ. Fuels, 2019, 3, 184-194.
- 11. J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He and Q. Tang, Adv. Energy Mater.,

2018, **8**, 1802346.

- Y. Zhao, Y. Wang, J. Duan, X. Yang and Q. Tang, J. Mater. Chem. A, 2019, 7, 6877-6882.
- 13. S. Zhou, R. Tang and L. Yin, Adv. Mater., 2017, 29, 1703682-1703690.
- X. Wan, Z. Yu, W. Tian, F. Huang, S. Jin, X. Yang, Y. B. Cheng, A. Hagfeldt and L. Sun, J. Energy Chem., 2020, 46, 8-15.
- 15. T. Chen, G. Tong, E. Xu, H. Li, P. Li, Z. Zhu, J. Tang, Y. Qi and Y. Jiang, J. Mater. Chem. A, 2019, 7, 20597-20603.
- 16. Q. A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, J. M. Ball, M. Prato, A. Petrozza and L. Manna, *Nat. Energy*, 2016, 2, 16194.
- 17. W. Zhang, X. Liu, B. He, J. Zhu, X. Li, K. Shen, H. Chen, Y. Duan and Q. Tang, ACS Appl. Mater. Interfaces, 2020, 12, 36092-36101.
- H. Guo, Y. Pei, J. Zhang, C. Cai, K. Zhou and Y. Zhu, J. Mater. Chem. C, 2019, 7, 11234-11243.
- X. Li, Y. Tan, H. Lai, S. Li, Y. Chen, S. Li, P. Xu and J. Yang, ACS Appl. Mater. Interfaces, 2019, 11, 29746-29752.
- 20. W. Zhang, X. Liu, B. He, Z. Gong, J. Zhu, Y. Ding, H. Chen and Q. Tang, ACS Appl Mater Interfaces, 2020, 12, 4540-4548.
- 21. X. Cao, G. Zhang, Y. Cai, L. Jiang, W. Yang, W. Song, X. He, Q. Zeng, Y. Jia and J. Wei, *Green Chem.*, 2021, 23, 470-478.