Supporting Information

Graphene-Assisted Ti₃C₂ MXene-Derived Ultrathin Sodium Titanate for Capacitive deionization with Excellent Rate Performance and Long Cycling Stability

Xiaojie Shen^{1, 2, 3}, Liqing Li⁴, Yuecheng Xiong^{3, 5, 6}, Fei Yu^{1*}, Jie Ma^{3,4*}

1 College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, P.R. China, E-mail: <u>fyu@vip.163.com</u>

2 Department of Environmental Science & Engineering, College of Chemical

Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road,

Beijing 100029, P. R. China

3 Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092,

P.R. China

4 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science

and Technology, Ganzhou, 341000, P.R. China, E-mail:liliqing79@126.com

5 Department of Chemistry, City University of Hong Kong, Hong Kong, 999077

China

6 Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, 999077 China

Experimental methods

1. Preparation of 2D delaminated Ti₃C₂T_x MXene

One gram of LiF (>98%) was dissolved in 20 mL of 9 M HCl. Then, 1 g of sieved Ti_3AlC_2 powders (400 mesh) was added. The mixture was kept at 40°C for 24 h under stirring with a magnetic stirrer. The resulting solid residue was washed several times with deionized water and centrifuged at a speed of 3500 rpm until the pH of the supernatant was approximately 6. The powder was mixed with deionized water and sonicated for 1 h under an ice-bath, through which Ar gas was bubbled. The resulting solution was centrifuged for 40 min at a speed of 4000 rpm. Finally, the 2D delaminated $Ti_3C_2T_x$ colloidal was obtained. To determine the volumetric density, a syringe was used to pull out 3 ml of the colloidal suspension to filter a film. The remaining suspension was stored in sealed bottles under Ar. After drying in air, it was weighed. For all the work conducted herein, the 2D delaminated $Ti_3C_2T_x$ MXene solution concentration was approximately 3 mg/mL.

2. Material characterization

Scanning electron microscopy (SEM, Hitachi 54800, Japan) and transmission electron microscopy (TEM, JEOL-2010F, Japan) were used to analyze the morphology and microstructure. The crystal structures were analyzed using X-ray diffraction (XRD, D8 Advance, Bruker, Germany) operated at 40 mA and 45 kV with Cu K α radiation (λ =0.15418 nm, 5°/min, 3-65°). The Brunauer-Emmett-Teller (BET) isotherms and specific surface area (BET surface area) were obtained using a Belsorp Mini-II instrument (Japan) at 77 K. The pore size distribution profile was analyzed using the Barrett-Joyner-Halenda (BJH) model. X-ray photoelectron spectroscopy (XPS Kratos Axis UltraDLD SHIMADZU, Japan) was performed using monochromated Al Ka Xrays at a base pressure of 1×10⁻⁹ Torr.

3. Electrochemical measurement

The AC EDL electrode consisted of 80% active material, 10% acetylene black and a 10% polyvinylidene difluoride (PVDF) binder in N-methyl-2-pyrrolidone (NMP) on a graphite sheet (mass ratio). Constant voltage (CV) and galvanostatic chargingdischarging (GCD) tests were performed on a three-electrode electrochemical workstation (CHI660D, Chenhua Instruments Co., China), using Pt as the counter electrode, Ag/AgCl as the reference electrode, and 1 M NaCl as the electrolyte. The specific capacitance (C, F/g) can be obtained from the CV curves using the following equation:

$$C = \int i dV / \Delta V m v \tag{1}$$

where *i* is the current (A), m is the mass of the active material (g), ΔV is the voltage window (V), and *v* is the scan rate (V/s).

Electrochemical impedance spectroscopy (EIS) was applied via a CHI660D instrument with a calomel reference electrode, and the data were obtained using a 5mV amplitude in the frequency range from 10^5 Hz to 0.1 Hz.

4. Desalination experiments

The electrosorption experiments were conducted in a batch mode system with an HCDI unit cell, which included an activated carbon (AC) anode, an MXene cathode, an anion exchange membrane (AEM) and a cation exchange membrane (CEM). All the experiments were performed by applying a 30 mA/g electric current density with a flow rate of 50 ml/min, and the feed water was pumped through plastic tubes via a peristaltic pump. The conductivity of the solution was monitored by a conductivity meter (METTLER TOLEDO S230, Switzerland). The volume and temperature of the solution were maintained at 45 mL and 25°C, respectively. The relationship between the conductivity and the concentration was calibrated prior to the deionization experiments. The desalination capacity (Γ), removal rates (ν) and energy consumption (kWh/kg-NaCl) are defined as follows:

$$\Gamma = (C_0 - C_e) \times V/m_t$$
(2)
$$v = \frac{\Gamma}{t}$$
(3)
Energy consumption
$$= \frac{i \times \int v \, dt}{3.6 \times (C_e - C_0) \times V}$$
(4)

where C_0 and C_e (mg/L) are the initial and final NaCl concentrations, respectively, m_t (g) is the mass of the MXene electrode, *i* is the current (A), and V(L) is the volume of the NaCl solution.

Figure S1. TEM images of Ti3C2Tx (a, b) and M-NTO/rGO (c, d).

Figure S2 typical high-resolution XPS of C1s (a) and Ti 2p (b) of MXene.

Electrode materials	C ₀ (mg	Applied	SAC (mg/g)	Long	Ref.
(Cathode)	/L)	voltage/curren		term-	
		t density		stabillity	
MnO ₂	500	1.4	14.9	350	[1]
Hybrid-MnO ₂	850	1.2	27.3	-	[2]
Na ₄ Mn ₉ O ₁₈	580	1.2	31.2	-	[3]
aNa ₂ FeP ₂ O ₇	580	1.2	30.2	-	[4]
AC-Ti-S	500	1.2	10	-	[5]
Ag coated carbon	580	0.7	15.6	-	[6]
composite					
Grapheme@Na ₄ Ti ₉	250	1.4	41.8	-	[7]
O					
M-NTO/rGO	1000	30mA/g/1.4V	57.57	100	This
					work

Table.S1 Comparison of various reported electrodes applied for CDI.

References

[1] Wu, T.; Wang, G.; Wang, S.; Zhan, F.; Fu, Y.; Qiao, H.; Qiu, J., Highly Stable Hybrid Capacitive Deionization with a MnO2 Anode and a Positively Charged Cathode. *Environmental Science & Technology Letters* **2018**, *5*, (2), 98-102.

[2] Byles, B. W.; Cullen, D. A.; More, K. L.; Pomerantseva, E., Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. *Nano Energy* 2018, *44*, 476-488.
[3] Lee, J.; Kim, S.; Kim, C.; Yoon, J., Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. *Energy & Environmental Science* 2014, *7*, (11), 3683-3689.

[4] Kim, S.; Lee, J.; Kim, C.; Yoon, J., Na2FeP2O7 as a Novel Material for Hybrid Capacitive Deionization. *Electrochimica Acta* **2016**, *203*, 265-271.

[5] Min, B. H.; Choi, J.-H.; Jung, K. Y., Improved capacitive deionization of sulfonated carbon/titania hybrid electrode. *Electrochimica Acta* **2018**, *270*, 543-551.

[6] Yoon, H.; Lee, J.; Kim, S.; Yoon, J., Hybrid capacitive deionization with Ag coated carbon composite electrode. *Desalination* **2017**, *422*, 42-48.

[7] Zhou, F.; Gao, T.; Luo, M.; Li, H., Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization with ultrahigh desalination capacity. *Chemical Engineering Journal* **2018**, *343*, 8-15.