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Experimental methods

1. Preparation of 2D delaminated Ti3C2Tx MXene  

One gram of LiF (>98%) was dissolved in 20 mL of 9 M HCl. Then, 1 g of sieved 

Ti3AlC2 powders (400 mesh) was added. The mixture was kept at 40°C for 24 h under 

stirring with a magnetic stirrer. The resulting solid residue was washed several times 

with deionized water and centrifuged at a speed of 3500 rpm until the pH of the 

supernatant was approximately 6. The powder was mixed with deionized water and 

sonicated for 1 h under an ice-bath, through which Ar gas was bubbled. The resulting 

solution was centrifuged for 40 min at a speed of 4000 rpm. Finally, the 2D delaminated 

Ti3C2Tx colloidal was obtained. To determine the volumetric density, a syringe was 

used to pull out 3 ml of the colloidal suspension to filter a film. The remaining 

suspension was stored in sealed bottles under Ar. After drying in air, it was weighed. 

For all the work conducted herein, the 2D delaminated Ti3C2Tx MXene solution 

concentration was approximately 3 mg/mL.

2. Material characterization 

Scanning electron microscopy (SEM, Hitachi 54800, Japan) and transmission 

electron microscopy (TEM, JEOL-2010F, Japan) were used to analyze the morphology 

and microstructure. The crystal structures were analyzed using X-ray diffraction (XRD, 

D8 Advance, Bruker, Germany) operated at 40 mA and 45 kV with Cu Kα radiation 

(λ=0.15418 nm, 5°/min, 3-65°). The Brunauer-Emmett-Teller (BET) isotherms and 

specific surface area (BET surface area) were obtained using a Belsorp Mini-Ⅱ 

instrument (Japan) at 77 K. The pore size distribution profile was analyzed using the 

Barrett-Joyner-Halenda (BJH) model. X-ray photoelectron spectroscopy (XPS Kratos 

Axis UltraDLD SHIMADZU, Japan) was performed using monochromated Al Ka X-

rays at a base pressure of 1×10-9
 Torr.

3. Electrochemical measurement 

The AC EDL electrode consisted of 80% active material, 10% acetylene black and 

a 10% polyvinylidene difluoride (PVDF) binder in N-methyl-2-pyrrolidone (NMP) on 

a graphite sheet (mass ratio). Constant voltage (CV) and galvanostatic charging-

discharging (GCD) tests were performed on a three-electrode electrochemical 

workstation (CHI660D, Chenhua Instruments Co., China), using Pt as the counter 

electrode, Ag/AgCl as the reference electrode, and 1 M NaCl as the electrolyte. The 

specific capacitance (C, F/g) can be obtained from the CV curves using the following 



equation:

   (1)
 𝐶 = ∫𝑖𝑑𝑉/∆𝑉𝑚𝑣 

where i is the current (A), m is the mass of the active material (g), ∆V is the voltage 

window (V), and v is the scan rate (V/s). 

Electrochemical impedance spectroscopy (EIS) was applied via a CHI660D 

instrument with a calomel reference electrode, and the data were obtained using a 5mV 

amplitude in the frequency range from 105 Hz to 0.1 Hz.

4. Desalination experiments

The electrosorption experiments were conducted in a batch mode system with an 

HCDI unit cell, which included an activated carbon (AC) anode, an MXene cathode, 

an anion exchange membrane (AEM) and a cation exchange membrane (CEM). All the 

experiments were performed by applying a 30 mA/g electric current density with a flow 

rate of 50 ml/min, and the feed water was pumped through plastic tubes via a peristaltic 

pump. The conductivity of the solution was monitored by a conductivity meter 

(METTLER TOLEDO S230, Switzerland). The volume and temperature of the solution 

were maintained at 45 mL and 25C, respectively. The relationship between the 

conductivity and the concentration was calibrated prior to the deionization experiments. 

The desalination capacity (Г), removal rates (v) and energy consumption (kWh/kg-

NaCl) are defined as follows:

                     (2)Г = (𝐶𝑂 ‒ 𝐶𝑒) × 𝑉/𝑚𝑡

                                  (3)
𝑣 =

Г
𝑡

          (4) 
Energy consumption =  

  i × ∫v dt

3.6 ×  (Ce - C0) × V

where C0 and Ce (mg/L) are the initial and final NaCl concentrations, respectively, mt 

(g) is the mass of the MXene electrode, i is the current (A), and V (L) is the volume of 

the NaCl solution.



Figure S1. TEM images of Ti3C2Tx (a, b) and M-NTO/rGO (c, d).



Figure S2 typical high-resolution XPS of C1s (a) and Ti 2p (b) of MXene. 



Table.S1 Comparison of various reported electrodes applied for CDI.

Electrode materials

(Cathode)

C0（mg 

/L）

Applied 

voltage/curren

t density

SAC (mg/g) Long 

term-

stabillity

Ref.

MnO2 500 1.4 14.9 350 [1]

Hybrid-MnO2 850 1.2 27.3 - [2]

Na4Mn9O18 580 1.2 31.2 - [3]

aNa2FeP2O7 580 1.2 30.2 - [4]

AC-Ti-S 500 1.2 10 - [5]

Ag coated carbon

composite

580 0.7 15.6 -   [6]

Grapheme@Na4Ti9
O20

250 1.4 41.8 - [7]

M-NTO/rGO 1000 30mA/g/1.4V 57.57 100 This 

work
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