Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Designed Synthesis of MOR Zeolites using Gemini-type Bis(methylpyrrolidinium)

Dications as Structure Directing Agents and Their DME Carbonylation

Performance

Nan Chen^{ab}, Jin Zhang^{ab}, Yating Gu^{ab}, Wenna Zhang^a, Kaipeng Cao^{ab}, Wenhao Cui^{ab},

Shutao Xu^a, Dong Fan^{*a}, Peng Tian^{*a}, Zhongmin Liu^{ab}

^a National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

^b University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China

*Corresponding authors :

E-mail addresses: fandong08@dicp.ac.cn (Dong Fan); tianpeng@dicp.ac.cn (Peng Tian).

Fig. S1 The ${}^{13}C$ NMR spectra of the four organic dications solvated in D₂O.

Fig. S2 XRD patterns of the seed and reference samples.

Fig. S3 SEM images of the as-synthesized MOR samples.

Fig. S4 The ²⁹Si MAS NMR (pink) and ¹H-²⁹Si CP MAS NMR spectra (blue) of the as-synthesized samples: (a) 2BMPr-MOR, (b) 3BMPr-MOR.

Fig. S5 Thermal analysis of the as-synthesized MOR samples: (a) 2BMPr-MOR, (b) 3BMPr-MOR, (c) 4BMPr-MOR, (d) 5BMPr-MOR, (e) TEAOH-MOR.

Fig. S6 NH₃-adsorbed FTIR spectra of H-MOR samples after NH₃ desorption at different temperatures: (a) 2BMPr-MOR, (b) 3BMPr-MOR, (c) 4BMPr-MOR, (d) TEAOH-MOR.

Fig. S7 The catalytic performance of DME carbonylation over 5BMPr-MOR. Reaction conditions: 200 °C, 2 MPa, DME/CO/N₂ = 5/35/60, GHSV = 7200 mL/g/h.

	Gel molar composition ^a		m • ())	product		Solid yield ^c	
SDA ·	SiO ₂ /Al ₂ O ₃	Na ₂ O/SiO ₂	- Times(days) -	Phase	SAR ^b	(%)	
2BMPr	22	0.18	2	MOR	10.2	92	
		0.2	2	MOR	9.5	84	
	26	0.18	2	MOR	12.0(12.4)	86	
		0.2	2	MOR	10.5	76	
	30	0.2	2	MOR (amorphous)			
			2.5	MOR	12.9	85	
			3	MOR	12.4	83	
	34	0.2	2	Amorphous			
			2.5	MOR+Quartz			
3BMPr	22	0.2	2	MOR	9.4	82	
	26	0.18	2	MOR	11.9(12.0)	84	
		0.2	2	MOR	10.9	85	
			3	MOR+ANA			
			4	MOR+Quartz			
	28	0.2	2	MOR	12.1	65	
			2.5	MOR	11.9	78	
	30	0.2	2	Amorphous			
			2.5	MOR	12.4	82	
			3	MOR+ZSM-5			
	34	0.2	2	Amorphous			
			2.5	MOR+Nu-6			
			3	MOR+Quartz			
4BMPr	26	0.18	5	Amorphous			
		0.24	2	Amorphous			
	30	0.18	5	Amorphous			
		0.2	4	MOR+ZSM-5			
		0.22	3	Amorphous			
		0.24	4	MOR	9.7	65	
	32	0.18	4.5	Amorphous			
			5	MOR	12.1(12.0)	73	
			5.5	MOR+ZSM-5			
5BMPr	26	0.16	4	Amorphous			
			5	MOR+ZSM-5			
		0.18	3	Amorphous			
			4	MOR+ZSM-5+SSZ-24			
		0.2	3	MOR+ZSM-5			
		0.22	2	MOR	9.6(9.4)	64	
		0.24	2	MOR	8.6	55	
	30	0.18	5	MOR+ZSM-5+ZSM-57			
		0.24	2	MOR+ZSM-5+SUZ-4			

Table S1. Synthesis results for MOR zeolites using nBMPr [n=2, 3, 4, 5].

.

.

32	0.18	5	MOR+ZSM-5+SUZ-4	
34	0.24	2	Amorphous	

^a Gel molar composition: $H_2O/SiO_2=15$, OSDA/SiO_2=0.12, seed addition: 6 wt% relative to SiO_2 resource; crystallization temperature: 180 °C. The SAR (Si/Al ratio) of MOR seed are 12.9 derived from XRF.

^b The SAR was derived from XRF and the value in the bracket was calculated from ²⁹Si MAS NMR.

^c The yield was calculated based on the mass of silica and alumina.

Table S2. OSDA s	stabilization e	energy for the	he four dication	ns used in this v	vork.

OSDA	OSDA stabilization energy (kJ/mol Si) ^a
2BMPr	-5.01
3BMPr	-4.85
4BMPr	-4.80
5BMPr	-4.60

^a OSDA stabilization energy (nBMPr) = E(total) - E(zeolite) - E(nBMPr).

Literature	Reaction conditions				STY of MA	Pyridine	
	DME : CO (%)	T (°C)	P (MPa)	GHSV (mL/g/h)	(mmol/h/g)	modification	
[1]	2:93	165	1	12024	1.9		
[2]	5:50	200	1	1250	0.8	Yes	
[3]	5:50	200	1	1250	1.7		
[4]	3:95.5	210	1.5	5280	4.0		
[5]	5:35	200	2	1500	1.3		
[6]	1:47	200	1.5	4500	1.8		
[7]	5:35	200	3	1500	2.8		
[8]	2.4:50	210	2	2100	3.2		
[9]	1:49	200	1.5	6000	1.6		
[10]	5:50	200	1	1250	1.3		
[11]	5:35	200	2	1500	3.0	Yes	
[12]	1:47	200	1.5	3000	1.1	Yes	
[13]	5:76	200	1	2500	2.5		
[14]	1:49	200	1.5	6000	1.6		
[15]	2:98	190	2	2000	1.8		
[16]	3:95.5	190	1.5	2640	2.8		
[17]	5:35	200	2	3600	7.2	Yes	
[18]	1:49	200	1.5	6000	6.5		
[19]	1:49	200	1.5	6000	7.2		
[20]	1:49	200	1.5	6000	6.4		
[21]	5:35	200	2	2250	4.5		
[22]	5:35	200	2	3600	6.8	Yes	
[23]	5:35	200	2	3600	6.4	Yes	
Our work	5:35	200	2	7200	12.5	Yes	

Table S3. Summary of the product STY in the MOR-catalyzed DME carbonylation

 reaction.

References

- 1. A. Bhan, A. D. Allian, G. J. Sunley, D. J. Law and E. Iglesia, Journal of the American Chemical Society, 2007, 129, 4919-4924.
- J. Liu, H. Xue, X. Huang, P.-H. Wu, S.-J. Huang, S.-B. Liu and W. Shen, Chinese Journal of Catalysis, 2010, 31, 729-738.
- H. Xue, X. Huang, E. Zhan, M. Ma and W. Shen, Catalysis Communications, 2013, 37, 75-79.
- Y. Liu, N. Zhao, H. Xian, Q. Cheng, Y. Tan, N. Tsubaki and X. Li, ACS Applied Materials & Interfaces, 2015, 7, 8398-8403.
- 5. Y. Yuan, L. Wang, H. Liu, P. Tian, M. Yang, S. Xu and Z. Liu, Chinese Journal of Catalysis, 2015, 36, 1910-1919.
- H. Zhan, S. Huang, Y. Li, J. Lv, S. Wang and X. Ma, Catalysis Science & Technology, 2015, 5, 4378-4389.
- 7. H. Zhou, W. Zhu, L. Shi, H. Liu, S. Liu, S. Xu, Y. Ni, Y. Liu, L. Li and Z. Liu, Catalysis Science & Technology, 2015, 5, 1961-1968.
- 8. A. A. C. Reule and N. Semagina, ACS Catalysis, 2016, 6, 4972-4975.
- 9. M. Wang, S. Huang, J. Lu, Z. Cheng, Y. Li, S. Wang and X. Ma, Chinese Journal of Catalysis, 2016, 37, 1530-1538.
- M. Ma, X. Huang, E. Zhan, Y. Zhou, H. Xue and W. Shen, Journal of Materials Chemistry A, 2017, 5, 8887-8891.
- L. Li, Q. Wang, H. Liu, T. Sun, D. Fan, M. Yang, P. Tian and Z. Liu, ACS Applied Materials & Interfaces, 2018, 10, 32239-32246.
- 12. Y. Li, Q. Sun, S. Huang, Z. Cheng, K. Cai, J. Lv and X. Ma, Catalysis Today, 2018, 311, 81-88.
- M. Ma, E. Zhan, X. Huang, N. Ta, Z. Xiong, L. Bai and W. Shen, Catalysis Science & Technology, 2018, 8, 2124-2130.
- 14. Y. Li, S. Huang, Z. Cheng, K. Cai, L. Li, E. Milan, J. Lv, Y. Wang, Q. Sun and X. Ma, Applied Catalysis B: Environmental, 2019, 256, 117777.
- 15. X. Wang, R. Li, C. Yu, Y. Liu, L. Liu, C. Xu, H. Zhou and C. Lu, Industrial & Engineering Chemistry Research, 2019, 58, 18065-18072.
- 16. N. Zhao, Q. Cheng, S. Lyu, L. Guo, Y. Tian, T. Ding, J. Xu, X. Ma and X. Li, Catalysis Today, 2020, 339, 86-92.
- 17. K. Cao, D. Fan, L. Li, B. Fan, L. Wang, D. Zhu, Q. Wang, P. Tian and Z. Liu, ACS Catalysis, 2020, 10, 3372-3380.
- P. He, Y. Li, K. Cai, X. Xiong, J. Lv, Y. Wang, S. Huang and X. Ma, ACS Applied Nano Materials, 2020, 3, 6460-6468.
- 19. Y. Li, M. Yu, K. Cai, M. Wang, J. Lv, R. F. Howe, S. Huang and X. Ma, Physical Chemistry Chemical Physics, 2020, 22, 11374-11381.
- S. Liu, Z. Cheng, Y. Li, J. Sun, K. Cai, S. Huang, J. Lv, S. Wang and X. Ma, Industrial & Engineering Chemistry Research, 2020, 59, 13861-13869.
- 21. S. Liu, H. Liu, X. Ma, Y. Liu, W. Zhu and Z. Liu, Catalysis Science & Technology, 2020, 10, 4663-4672.

- 22. K. Cao, D. Fan, S. Zeng, B. Fan, N. Chen, M. Gao, D. Zhu, L. Wang, P. Tian and Z. Liu, Chinese Journal of Catalysis, 2021, 42, 1468-1477.
- 23. K. Cao, D. Fan, M. Gao, B. Fan, N. Chen, L. Wang, P. Tian and Z. Liu, ACS Catalysis, 2022, 12, 1-7.
- 24. J. Datka, B. Gil and A. Kubacka, Zeolites, 1995, 15, 501-506.