## **Supporting Information**

## A novel gel-polymer electrolyte doped with MXene enabling

## dendrite-free cycling for high performance sodium metal batteries

Yixin Zhang,<sup>a</sup> Feng Wu,<sup>a</sup> Yongxin Huang,<sup>a</sup> Shuaijie Li,<sup>a</sup> Cheng Li,<sup>a</sup> Ziheng Wang,<sup>a</sup> Man Xie<sup>\*a</sup>

| Sample                   | PVDF-HFP/g | PEG-4000/g | MXene/g | ionic conductivity/10-4 |
|--------------------------|------------|------------|---------|-------------------------|
| 0%PEG-PVDF-HFP           | 2.0        | 0          | 0       | 1.15                    |
| 10%PEG-PVDF-HFP          | 2.0        | 0.2        | 0       | 1.90                    |
| 20%PEG-PVDF-HFP          | 2.0        | 0.4        | 0       | 2.06                    |
| 30%PEG-PVDF-HFP          | 2.0        | 0.6        | 0       | 7.51                    |
| 40%PEG-PVDF-HFP          | 2.0        | 0.8        | 0       | 8.82                    |
| 50%PEG-PVDF-HFP          | 2.0        | 1.0        | 0       | 11.71                   |
| 60%PEG-PVDF-HFP          | 2.0        | 1.2        | 0       | 9.48                    |
| 2%MXene-50%PEG-PVDF-HFP  | 2.0        | 1.0        | 0.04    | 11.84                   |
| 4%MXene-50%PEG-PVDF-HFP  | 2.0        | 1.0        | 0.08    | 12.22                   |
| 6%MXene-50%PEG-PVDF-HFP  | 2.0        | 1.0        | 0.12    | 14.88                   |
| 8%MXene-50%PEG-PVDF-HFP  | 2.0        | 1.0        | 0.16    | 17.56                   |
| 10%MXene-50%PEG-PVDF-HFP | 2.0        | 1.0        | 0.20    | 15.27                   |

Table S1. Formula and ionic conductivity for different samples

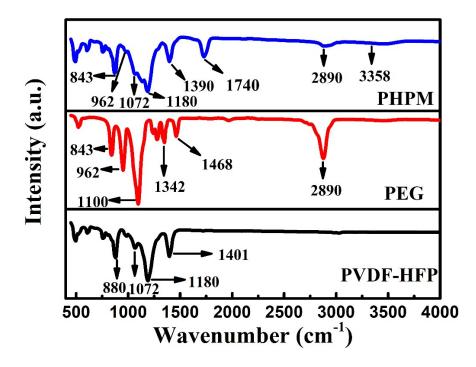



Figure S1. Infrared spectrum images of PVDF-HFP, PHP and PHPM membranes.

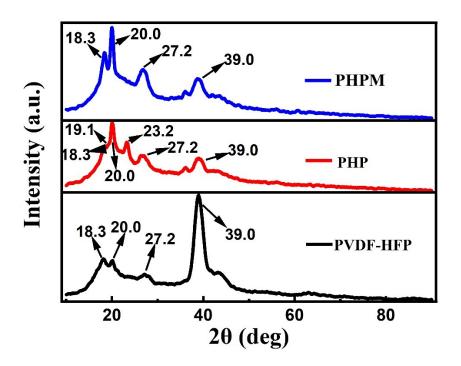



Figure S2. X-Ray Diffraction of PVDF-HFP, PHP and PHPM membranes.

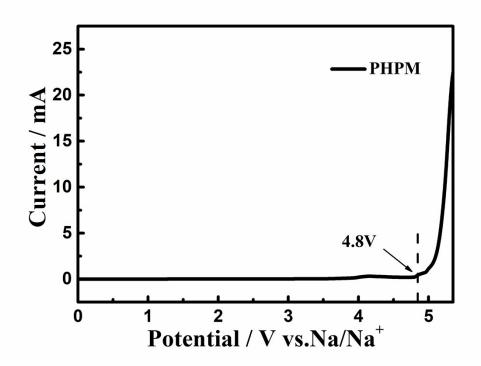



Figure S3. Linear sweep voltammetry curves from 0 V to 5.5 V with a sweep rate of 1 mV S<sup>-1</sup> for cells with PHPM GPE sandwiched between stainless-steel and sodium electrodes.

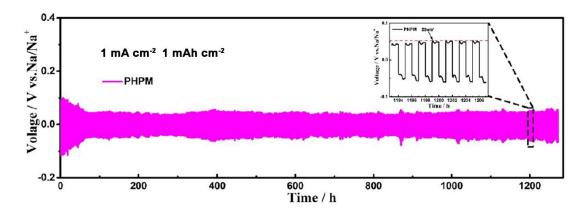



Figure S4. Voltage–time curves of symmetric Na-PHPM-Na cells at the current density of 1.0 mA  $cm^{-2}$ .



Figure S5. Photographs of Na-metal of Na-GPE-Na symmetric battery with PVDF-HFP, PHP and PHPM GPEs after Na plating/stripping for 1200 h.

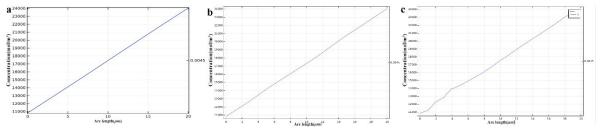



Figure S6. In-plane average concentration profile of different electrolytes and different arrangements:(a) PVDF-HFP, (b)PHP, (c)PHPM.

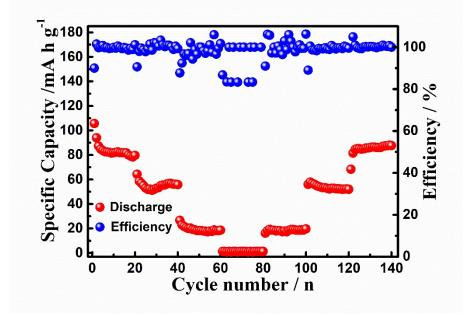



Figure S7. Rate capability at the current density of 1C, 2C, 3C, 4C with sodium titanium phosphate as anode and PHPM electrolyte as eletrolyte.

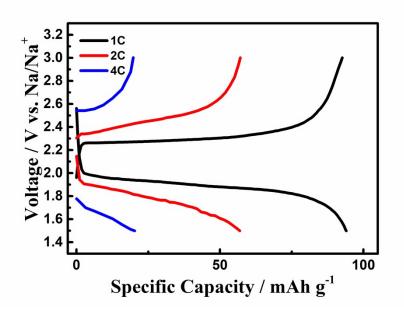



Figure S8. Charge/discharge curves with PH gel electrolyte at the current density of 1C, 2C, 4C.

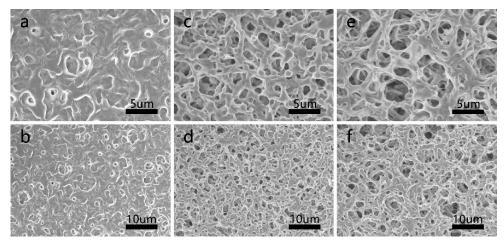



Figure S9. Enlarged view of microstructure of (a) and (b) PVDF; (c) and (d) PVDF-HFP; (e) and (f) PHPM.

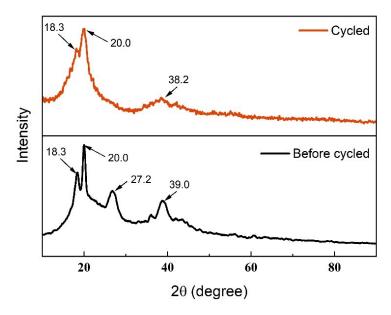



Figure. S10 The XRD pattern of PHPM after cycled in the Na//PHPM//Na battery.

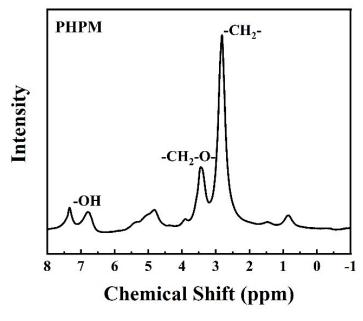



Figure. S11 H1-NMR of PHPM

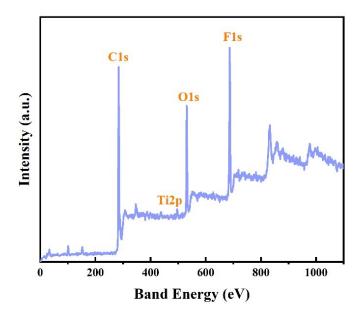



Figure. S12 XPS pattern of PHPM after cycled in symmetric battery.