Electronic Supplementary Information

Self-assembled ultrasmall mixed Co-W phosphide nanoparticles on pristine graphene with remarkable synergistic effects as highly efficient electroatalysts for hydrogen evolution

Xiaoyan Wang,^{ab} Jia Bo Le,^c Yang Fei,^d Ruiqin Gao,^e Maoxiang Jing,^f Weiyong Yuan*^{ag} and Chang Ming Li^h

^aNingbo Research Institute, Zhejiang University, Ningbo 315100, China

^bResearch Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

^cNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

^dState Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

^eSchool of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China

^fInstitute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China

^gCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

^hInstitute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China

*Corresponding author. E-mail: wyyuan@zju.edu.cn

Contents

1. FTIR spectra and high-resolution W 4f XPS spectra of G@HPW and G@HPW (without

HR) and TEM images of G@HPW (without HR) and G@HPW (Fig. S1).

- 2. EDX mapping of G@HPW after the hydrothermal reaction (Fig. S2).
- 3. High-resolution Co $2p_{3/2}$ and P 2p XPS spectra of the sample before phosphidation (Fig. S3).
- 4. Size distribution of Co-W-P NPs in G@Co-W-P (Fig. S4).
- 5. TEM and HRTEM images of Co-W-P/G and CoP/G (Fig. S5).
- 6. XRD patterns of one-step hydrothermal reaction and the sample with no HPW added in the second-step hydrothermal reaction (Fig. S6).
- 7. TEM image and high-resolution W 4f (B) and P 2p (C) XPS spectra of WP₂/G (Fig. S7).
- 8. Detailed comparison of the performance of G@W-Co-P in 0.5 M H₂SO₄ with those of representative non-noble-metal HER catalysts (Table S1).
- 9. Enlarged LSV curve of WP₂/G in 0.5 M H₂SO₄ (Fig. S8).
- 10. Detailed comparison of the performance of G@W-Co-P in 1 M KOH with those of representative non-noble-metal HER catalysts (Table S2).
- 11. XRD pattern of G@Co-W-P after the durability tests (Fig. S9).

Fig. S1 FTIR spectra (**A**) and high-resolution W 4f XPS spectra (**B**) of G@HPW and G@HPW (without HR) and TEM images of G@HPW (without HR) (**C**) and G@HPW (**D**).

Fig. S2 EDX mapping of G@HPW after the hydrothermal reaction.

Fig. S3 High-resolution Co $2p_{3/2}$ (A) and P 2p (B) XPS spectra of the sample before phosphidation.

Fig. S4 Size distribution of Co-W-P NPs in G@Co-W-P.

Fig. S5 TEM (**A** and **C**) and HRTEM (**B** and **D**) images of Co-W-P/G (**A** and **B**) and CoP/G (**C** and **D**).

Fig. S6 XRD patterns of one-step hydrothermal reaction (**A**) and the sample with no HPW added in the second-step hydrothermal reaction (**B**). • above the XRD pattern in (**A**) represents characteristic peaks of WP₂ (JCPDS card no. 35-1467) and the other peaks are from CoP (JCPDS card no. 29-0497) (except the peak C (002), which is from graphene). There are some peaks from $Co_3(PO_4)_2$ (JCPDS card no. 77-0225) in (**B**) (labeled with •), which is formed due to the surface oxidation under high temperature.

Fig. S7 TEM image and high-resolution W 4f (B) and P 2p (C) XPS spectra of WP₂/G.

Catalyst	Loading (mg cm ⁻²)	j ₀ (mA/cm ⁻²)	Onset overpotentia l (mV)	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Ref.
FeP ₂ /C NPs	0.425	0.00175		220	66	S1
CoP NFs	0.265			122	54.8	S2
W-W ₂ C/CNT-6	0.28			155	56	S3
Fe doped NiS ₂				198	42	S4
MoPS/NC	0.56		23	92	56	S5
CoP/CNT	0.285	0.13	40	122	54	S6
N,P-MoxC NF	0.265			107	65.1	S7
CoP/NCNHP				140	53	S 8
CoP@NG	0.283			158	63.8	S9
Mo ₂ C-N-CNFs	0.255	0.0473		167	70	S10
Ni ₂ P/CNT	0.2	0.0537		124	53	S11
WP ₂ nanorods	0.285	0.013	101	148	52	S12
FeP GS	0.28	0.12	30	123	50	S13
Ni ₂ P@NPCNFs	0.56			63.2	56.7	S14
MoP@PC	0.41			153	66	S15
CoP/Co ₂ P@NC-2				126	79	S16
FeP NPs@NPC	1.4	0.126		130	67	S17
CoP-OMC	0.285	0.161	77.74	112.18	56.67	S18
α -MoC _{1-x} /NC				142	74	S19
CoP-N-C	0.425	0.16	31	91	42	S20
Ni ₂ P hollow NPs	1	0.033		117	46	S21
G@W-Co-P	0.5	0.128	13	91.5	40.7	This work

Table S1 Detailed comparison of the performance of G@W-Co-P in 0.5 M H₂SO₄ with those of representative non-noble-metal HER catalysts.

Fig. S8 Enlarged LSV curve of WP₂/G in 0.5 M H₂SO₄.

Catalyst	Loading (mg cm ⁻²)	Onset overpotential (mV)	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Ref.
CoP NFs	0.265		136	56.2	S1
CoTeNR/NF	1.3		202	115	S22
Co_3O_4/MoS_2	2		205	98	S23
CoP/CC	0.92	45	106	93	S24
NiCoP/NPC HFSs	0.2	~80	128	70	S25
CoP/rGO-400	0.285		150	38	S26
Cu _{0.3} Co _{0.27} P/NC	0.4		220	112	S27
CoP/NCNHP			115	66	S8
CoP@NG	0.283		182	59.6	S9
NiCoP/CNF900		100	130	83	S28

Table S2 Detailed comparison of the performance of G@W-Co-P in 1 M KOH with those of representative non-noble-metal HER catalysts.

Co-PNCNFs	0.56		249	92	S29
Ni _{0.69} Co _{0.35} P	3.5		167	47	S30
Ni ₁₂ P ₅ /NF	3		170	106	S31
FeP NAs/CC	1.5	86	218	146	S32
W-W2C/CNT-6	0.28		147	51	S3
Co ₄ Ni ₁ P NTs	0.19		129	52	S33
CoFe/NF			110	35	S34
NiCoP@NF			155	115	S35
WP ₂ nanorods		149	225	84	S12
EG/H-Co0.85Se P	2.1		150	83	S36
NiCoP/rGO	0.19		209	124.1	S37
G@W-Co-P	0.5	16.1	102.3	61.2	This work

Fig. S9 XRD pattern of G@Co-W-P after the durability tests.

References

- [S1] J. Jiang, C. Wang, J. Zhang, W. Wang, X. Zhou, B. Pan, K. Tang, J. Zuo, Q. Yang, J. Mater. Chem. A 2015, 3, 499-503.
- [S2] L. Ji, J. Wang, X. Teng, T. J. Meyer, Z. Chen, ACS Catal. 2020, 10, 412-419.
- [S3] Y. Hu, B. Yu, M. Ramadoss, W. Li, D. Yang, B. Wang, W. Chen, ACS Sustain. Chem. Eng. 2019, 7, 10016-10024.
- [S4] T. Wang, X. Guo, J. Zhang, W. Xiao, P. Xi, S. Peng, D. Gao, J. Mater. Chem. A 2019, 7, 4971-4976.
- [S5] Y. Huang, X. Song, J. Deng, C. Zha, W. Huang, Y. Wu, Y. Li, *Appl. Catal. B: Environ.* 2019, 245, 656-661.
- [S6] Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri, X. Sun, Angew. Chem. Int. Edit. 2014, 53, 6710-6714.
- [S7] L. Ji, J. Wang, X. Teng, H. Dong, X. He, Z. Chen, ACS Appl. Mater. Interfaces 2018, 10, 14632-14640.
- [S8] Y. Pan, K. Sun, S. Liu, X. Cao, K. Wu, W. C. Cheong, Z. Chen, Y. Wang, Y. Li, Y. Liu,
 D. Wang, Q. Peng, C. Chen, Y. Li, *J. Am. Chem. Soc.* 2018, 140, 2610-2618.
- [S9] Y. Lu, W. Hou, D. Yang, Y. Chen, *Electrochim. Acta* 2019, **307**, 543-552.
- [S10] Z. Y. Wu, B. C. Hu, P. Wu, H. W. Liang, Z. L. Yu, Y. Lin, Y. R. Zheng, Z. Li, S. H. Yu, NPG Asia Mater. 2016, 8, e288.
- [S11] Y. Pan, W. Hu, D. Liu, Y. Liu, C. Liu, J. Mater. Chem. A 2015, 3, 13087-13094.
- [S12] H. Du, S. Gu, R. Liu, C. M. Li, J. Power Sources 2015, 278, 540-545.
- [S13] Z. Zhang, B. Lu, J. Hao, W. Yang, J. Tang, Chem. Commun. 2014, 50, 11554-11557.
- [S14] M. Q. Wang, C. Ye, H. Liu, M. Xu, S. J. Bao, Angew. Chem. Int. Edit. 2018, 57, 1963-1967.
- [S15] J. Yang, F. Zhang, X. Wang, D. He, G. Wu, Q. Yang, X. Hong, Y. Wu, Y. Li, Angew. Chem. Int. Edit. 2016, 55, 12854-12858.
- [S16] X. Lv, J. Ren, Y. Wang, Y. Liu, Z. Y. Yuan, ACS Sustain. Chem. Eng. 2019, 7, 8993-9001.
- [S17] Z. Pu, I. S. Amiinu, C. Zhang, M. Wang, Z. Kou, S. Mu, *Nanoscale* 2017, **9**, 3555-3560
- [S18] M. Li, X. Liu, Y. Xiong, X. Bo, Y. Zhang, C. Han, L. Guo, J. Mater. Chem. A 2015, 3, 4255-4265.
- [S19] L. Lin, Z. Sun, M. Yuan, H. Yang, H. Li, C. Nan, H. Jiang, S. Ge, G. Sun, ACS Sustain.

Chem. Eng. 2019, 7, 9637-9645.

- [S20] Z. Zhang, J. Hao, W. Yang, J. Tang, ChemCatChem 2015, 7, 1920-1925.
- [S21] E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis,
 R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267-9270.
- [S22] L. Yang, H. Xu, H. Liu, D. Cheng, D. Cao, Small Methods 2019, 3, 1900113.
- [S23] A. Muthurasu, V. Maruthapandian, H. Y. Kim, *Appl. Catal. B: Environ.* 2019, 248, 202-210.
- [S24] J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc. 2014, 136, 7587-7590.
- [S25] M. Yi, B. Lu, X. Zhang, Y. Tan, Z. Zhu, Z. Pan, J. Zhang, Appl. Catal. B: Environ. 2021, 283, 119635.
- [S26] L. Jiao, Y. X. Zhou, H. L. Jiang, Chem. Sci. 2016, 7, 1690-1695.
- [S27] J. Song, C. Zhu, B. Z. Xu, S. Fu, M. H. Engelhard, R. Ye, D. Du, S. P. Beckman, Y. Lin, Adv. Energy Mater. 2017, 7, 1601555.
- [S28] S. Surendran, S. Shanmugapriya, A. Sivanantham, S. Shanmugam, R. K. Selvan, Adv. Energy Mater. 2018, 8, 1800555.
- [S29] Y. Zhao, J. Zhang, K. Li, Z. Ao, C. Wang, H. Liu, K. Sun, G. Wang, J. Mater. Chem. A 2016, 4, 12818-12824.
- [S30] Z. Yin, C. Zhu, C. Li, S. Zhang, X. Zhang, Y. Chen, Nanoscale 2016, 8, 19129-19138.
- [S31] P. W. Menezes, A. Indra, C. Das, C. Walter, C. Goebel, V. Gutkin, D. Schmeisser, M. Driess, ACS Catal. 2017, 7, 103-109.
- [S32] Y. Liang, Q. Liu, A. M. Asiri, X. Sun, Y. Luo, ACS Catal. 2014, 4, 4065-4069.
- [S33] L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li, Y. Wang, X. Zhao, Adv. Funct. Mater. 2017, 27, 1703455.
- [S34] P. Babar, A. Lokhande, H. H. Shin, B. Pawar, M. G. Gang, S. Pawar, J. M. Kim, *Small* 2018, 14, 1702568.
- [S35] A. Han, H. Chen, H. Zhang, Z. Sun, P. Du, J. Mater. Chem. A 2016, 4, 10195-10202.
- [S36] Y. Hou, M. Qiu, T. Zhang, X. Zhuang, C. S. Kim, C. Yuan, X. Feng, *Adv. Mater.* 2017, 29, 1701589.
- [S37] J. Li, M. Yan, X. Zhou, Z. Q. Huang, Z. Xia, C. R. Chang, Y. Ma, Y. Qu, Adv. Funct. Mater. 2016, 26, 6785-6796.