Supporting Information

Biomass Upgrading Coupled with H₂ Production via a Nonprecious

and Versatile Cu-Doped Nickel Nanotube Electrocatalyst

Lingxia Zheng,*^{a,b} Yijian Zhao,^a Penghui Xu,^a Zhuoqing Lv,^a Xiaowei Shi^{a,b} and

Huajun Zheng* a,b

^aDepartment of Applied Chemistry, Zhejiang University of Technology, Hangzhou

310014, P. R. China

^bState Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,

Zhejiang University of Technology, Hangzhou 310014, P. R. China

E-mail: lxzheng@zjut.edu.cn; zhenghj@zjut.edu.cn

Figure S1. TEM-EDS of NiCu NPs catalyst.

Figure S2. TEM-EDS of NiCu NTs catalyst.

Figure S3. The survey spectrum of NiCu NTs catalyst and post-NiCu NTs.

Figure S4. LSV curves at 5 mV s⁻¹ in 1.0 M KOH with and without 20 mM HMF of

(a) bare NF, (b) NiCu NPs and (c) Cu-free electrodes.

Figure S5. Possible pathways of HMF oxidation to FDCA.

Figure S6. The *I-t* curves for the electrolysis of 20 mM HMF at a constant potential of 1.423 V vs. RHE for (a) NiCu NTs, (b) NiCu NPs, (c) NF electrode and (d) Cu-free catalysts.

Figure S7. (a) Charging current density differences plotted against scan rates and (b) EIS spectra of NiCu NTs, NiCu NPs and Cu-free electrodes.

Figure S8. (a) SEM image and (b) mapping results of NiCu NTs electrode after ECO.

Figure S9. (a,b) SEM images and (c,d) mapping results of NiCu NPs electrode after ECO.

Figure S10. The survey XPS spectrum of post NiCu NTs.

Figure S11. The electrolysis results over NiCu NTs in (a) 50 mM and (b) 100 mM HMF.

Figure S12. Cyclic voltammogram (CV) curves of NiCu NTs electro-oxidation HMF with different concentrations (a) no HMF, (b) 20 mM HMF, (c) 35 mM HMF, (d) 50 mM HMF, (e) 75 mM HMF and (f) 100 mM HMF in non-Faradic region at 20, 40, 60, 80 and 100 mV s⁻¹.

Figure S13. Raman spectra of NiCu NTs in KOH with and without HMF at a potential

of 0.55 V.

Figure S14. (a-c) CV curves in non-Faradic region at varied scan rates, (b) EIS spectrum of NiCu NTs with 20 mM BA, FFA and FF, respectively.

Figure S15. (a) Polarization curves at a scan rate of 5 mV s⁻¹ and (b) Tafel slopes of NiCu NTs and NiCu NPs electrodes for HER in 1.0 m KOH.

Catalyst	HMF	Electrolytic	FDCA	FE. %	Ref
	concentration	potential (V)	yield		
NiCu NTs	20 mM	1.424V vs RHE	99%	96.4%	This
					work
Ni _{0.9} Cu _{0.1} (OH) ₂	5 mM	1.45 V vs RHE	91.2%	91.20%	[1]
CoB	10 mM	1.45 V vs RHE	94%	100%	[2]
t-NiCo-MOF	10 mM	1.4 V vs RHE	~100%	98 %	[3]
nanocrystalline Cu	5 mM	1.69V vs RHE	96.40%	>95%	[4]
CuxS@NiCo-LDH	10 mM	1.34 V vs. RHE	100%	99%	[5]
NiCo ₂ O ₄	5 mM	1.5 V vs. RHE	90.40%	87.50%	[6]
Ni ₃ N@C	10 mM	1.38 V vs.RHE	98%	99%	[7]
Ni _x B	10 mM	1.45 Vvs. RHE	98.50%	100%	[8]
MnO _x	20 mM	2.0 Vvs. RHE	53.8%	69.50%	[9]
NiFe LDH	10 mM	1.23 V vs RHE	98.0%	99.4%	[10]
NiCo ₂ O ₄	10 mM	1.55 V vs. RHE	90%	~100%	[11]
NiSe@NiO _x	10 mM	1.423V vs RHE	99.00%	99.00%	[12]
CoFe@NiFe	10 mM	1.40 V vs RHE	100%	100%	[13]
Ag/C	10 mM	0.7 V VS Ag/AgCl	97%	98%	[14]
Ni2P NPA/NF	10 mM	1.423 V vs RHE	100%	98%	[15]
CoAl-LDH-NSA	10 mM	1.52 V vs. RHE	99.5%	99.4%	[16]

Table S1. Performance comparison of NiCu NTs catalyst with recent reported catalysts

 in literatures for electrocatalytic oxidation of HMF

Table S2. Calculated results of EIS measured by different concentrations of HMF

Rs	Rct Cd	
HMF concentration	$R_s(\Omega)$	$R_{ct}(\Omega)$
0 mM	0.58	5.59
20 mM	0.76	4.97
35 mM	0.76	4.76
50 mM	0.75	3.22
75 mM	0.73	2.44
100 mM	0.74	2.20

Catalyst	organic concentration	Current density	Potential	Ref.
·	0	(mA cm ⁻²)	(V)	
NiCu NTs	1M KOH + 20mM HMF	10	1.26	This
				work
CoAl-LDH	1M KOH + 10mM HMF	50	1.74	[16]
Ni2 NPA/NF	1M KOH + 10mM HMF	10	1.44	[15]
t-NiCo-MOF	1M KOH + 10mM HMF	100	1.392	[3]
CuxS@NiCo-LDHs	1M KOH + 10mM HMF	10	1.34	[5]
Ni ₃ S ₂ /Ni/NF	1M KOH + 0.5M urea	10	1.36	[17]
NiS@Ni ₃ S ₂ /NiMoO ₄	1M KOH + 0.5M urea	10	1.40	[18]
MOF-Ni@MOF-Fe-S	1M KOH + 0.5M urea	10	1.54	[19]
e-Ni ₃ S ₂ @FeNi3-8	1M KOH + 0.33M urea	10	1.50	[20]
Ni@NCNT-3	1 MKOH+0.5M urea	10	1.56	[21]
Ni ₄ N/Cu ₃ N	1 MKOH+0.5M urea	10	1.48	[22]
Mo-Co-S-Se/CC	1M KOH + 0.5M urea	10	1.40	[23]
NF@Acid-H ₂	1M KOH + 0.33M urea	10	1.49	[24]
NiMoO ₄	1M KOH + 1mM urea	10	1.61	[25]
a-Ni ₂ P/G	1M KOH + 0.5M urea	10	1.39	[26]

Table S3. Comparison of overall organic oxidation performance with other reported

 works in different organic concentration

References

[1] J. Zhang, P. Yu, G. Zeng, F. Bao, Y. Yuan, H. Huang, Boosting HMF oxidation performance via decorating ultrathin nickel hydroxide nanosheets with amorphous copper hydroxide islands, Journal Of Materials Chemistry A, 9 (2021) 9685-9691.

[2] J. Weidner, S. Barwe, K. Sliozberg, S. Piontek, J. Masa, U.P. Apfel, W. Schuhmann, Cobalt-metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting, Beilstein J Org Chem, 14 (2018) 1436-1445.

[3] X. Deng, M. Li, Y. Fan, L. Wang, X.-Z. Fu, J.-L. Luo, Constructing multifunctional 'Nanoplatelet-on-Nanoarray' electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production, Applied Catalysis B: Environmental, 278 (2020) 119339.

[4] D.-H. Nam, B.J. Taitt, K.-S. Choi, Copper-Based Catalytic Anodes To Produce 2,5-Furandicarboxylic Acid, a Biomass-Derived Alternative to Terephthalic Acid, ACS Catalysis, 8 (2018) 1197-1206.

[5] X. Deng, X. Kang, M. Li, K. Xiang, C. Wang, Z. Guo, J. Zhang, X.-Z. Fu, J.-L. Luo, Coupling efficient biomass upgrading with H-2 production via bifunctional CuxS@NiCo-LDH core-shell nanoarray electrocatalysts, Journal Of Materials Chemistry A, 8 (2020) 1138-1146.

[6] M.J. Kang, H. Park, J. Jegal, S.Y. Hwang, Y.S. Kang, H.G. Cha, Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media, Applied Catalysis B: Environmental, 242 (2019) 85-91.

[7] N. Zhang, Y. Zou, L. Tao, W. Chen, L. Zhou, Z. Liu, B. Zhou, G. Huang, H. Lin, S. Wang, Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy, Angew Chem Int Ed Engl, 58 (2019) 15895-15903.

[8] S. Barwe, J. Weidner, S. Cychy, D.M. Morales, S. Dieckhofer, D. Hiltrop, J. Masa, M. Muhler, W. Schuhmann, Electrocatalytic Oxidation of 5-(Hydroxymethyl)furfural Using High-Surface-Area Nickel Boride, Angewandte Chemie-International Edition, 57 (2018) 11460-11464.

[9] S.R. Kubota, K.S. Choi, Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation, ChemSusChem, 11 (2018) 2138-2145.

[10] W.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin, G.W. Huber, Electrochemical Oxidation of 5-Hydroxymethylfurfural with NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts, ACS Catalysis, 8 (2018) 5533-5541.

[11] L. Gao, Y. Bao, S. Gan, Z. Sun, Z. Song, D. Han, F. Li, L. Niu, Hierarchical Nickel-Cobalt-Based Transition Metal Oxide Catalysts for the Electrochemical Conversion of Biomass into Valuable Chemicals, Chemsuschem, 11 (2018) 2547-2553.

[12] L. Gao, Z. Liu, J. Ma, L. Zhong, Z. Song, J. Xu, S. Gan, D. Han, L. Niu, NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-

hydroxymethylfurfural into 2,5-furandicarboxylic acid, Applied Catalysis B-Environmental, 261 (2020).

[13] Y. Xie, Z. Zhou, N. Yang, G. Zhao, An Overall Reaction Integrated with Highly Selective Oxidation of 5 - Hydroxymethylfurfural and Efficient Hydrogen Evolution, Advanced Functional Materials, 31 (2021) 2102886.

[14] X.H. Chadderdon, D.J. Chadderdon, T. Pfennig, B.H. Shanks, W. Li, Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers, Green Chemistry, 21 (2019) 6210-6219.

[15] B. You, N. Jiang, X. Liu, Y. Sun, Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst, Angew Chem Int Ed Engl, 55 (2016) 9913-9917.

[16] Y. Song, Z. Li, K. Fan, Z. Ren, W. Xie, Y. Yang, M. Shao, M. Wei, Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation, Applied Catalysis B: Environmental, 299 (2021) 120669.[1] J. Zhang, P. Yu, G. Zeng, F. Bao, Y. Yuan, H. Huang, Boosting HMF oxidation performance via decorating ultrathin nickel hydroxide nanosheets with amorphous copper hydroxide islands, Journal Of Materials Chemistry A, 9 (2021) 9685-9691.

[2] J. Weidner, S. Barwe, K. Sliozberg, S. Piontek, J. Masa, U.P. Apfel, W. Schuhmann, Cobalt-metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting, Beilstein J Org Chem, 14 (2018) 1436-1445.

[3] X. Deng, M. Li, Y. Fan, L. Wang, X.-Z. Fu, J.-L. Luo, Constructing multifunctional 'Nanoplatelet-on-Nanoarray' electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production, Applied Catalysis B: Environmental, 278 (2020) 119339.

[4] D.-H. Nam, B.J. Taitt, K.-S. Choi, Copper-Based Catalytic Anodes To Produce 2,5-Furandicarboxylic Acid, a Biomass-Derived Alternative to Terephthalic Acid, ACS Catalysis, 8 (2018) 1197-1206.

[5] X. Deng, X. Kang, M. Li, K. Xiang, C. Wang, Z. Guo, J. Zhang, X.-Z. Fu, J.-L. Luo, Coupling efficient biomass upgrading with H-2 production via bifunctional CuxS@NiCo-LDH core-shell nanoarray electrocatalysts, Journal Of Materials Chemistry A, 8 (2020) 1138-1146.

[6] M.J. Kang, H. Park, J. Jegal, S.Y. Hwang, Y.S. Kang, H.G. Cha, Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media, Applied Catalysis B: Environmental, 242 (2019) 85-91.

[7] N. Zhang, Y. Zou, L. Tao, W. Chen, L. Zhou, Z. Liu, B. Zhou, G. Huang, H. Lin, S. Wang, Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy, Angew Chem Int Ed Engl, 58 (2019) 15895-15903.

[8] S. Barwe, J. Weidner, S. Cychy, D.M. Morales, S. Dieckhofer, D. Hiltrop, J. Masa,M. Muhler, W. Schuhmann, Electrocatalytic Oxidation of 5-(Hydroxymethyl)furfural

Using High-Surface-Area Nickel Boride, Angewandte Chemie-International Edition, 57 (2018) 11460-11464.

[9] S.R. Kubota, K.S. Choi, Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation, ChemSusChem, 11 (2018) 2138-2145.

[10] W.-J. Liu, L. Dang, Z. Xu, H.-Q. Yu, S. Jin, G.W. Huber, Electrochemical Oxidation of 5-Hydroxymethylfurfural with NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts, ACS Catalysis, 8 (2018) 5533-5541.

[11] L. Gao, Y. Bao, S. Gan, Z. Sun, Z. Song, D. Han, F. Li, L. Niu, Hierarchical Nickel-Cobalt-Based Transition Metal Oxide Catalysts for the Electrochemical Conversion of Biomass into Valuable Chemicals, Chemsuschem, 11 (2018) 2547-2553.

[12] L. Gao, Z. Liu, J. Ma, L. Zhong, Z. Song, J. Xu, S. Gan, D. Han, L. Niu, NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid, Applied Catalysis B-Environmental, 261 (2020).

[13] Y. Xie, Z. Zhou, N. Yang, G. Zhao, An Overall Reaction Integrated with Highly Selective Oxidation of 5 - Hydroxymethylfurfural and Efficient Hydrogen Evolution, Advanced Functional Materials, 31 (2021) 2102886.

[14] X.H. Chadderdon, D.J. Chadderdon, T. Pfennig, B.H. Shanks, W. Li, Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers, Green Chemistry, 21 (2019) 6210-6219.

[15] B. You, N. Jiang, X. Liu, Y. Sun, Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst, Angew Chem Int Ed Engl, 55 (2016) 9913-9917.

[16] Y. Song, Z. Li, K. Fan, Z. Ren, W. Xie, Y. Yang, M. Shao, M. Wei, Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation, Applied Catalysis B: Environmental, 299 (2021) 120669.

[17] X. Zhuo, W. Jiang, G. Qian, J. Chen, T. Yu, L. Luo, L. Lu, Y. Chen, S. Yin, Ni3S2/Ni Heterostructure Nanobelt Arrays as Bifunctional Catalysts for Urea-Rich Wastewater Degradation, Acs Applied Materials & Interfaces, 13 (2021) 35709-35718.

[18] L. Sha, T. Liu, K. Ye, K. Zhu, J. Yan, J. Yin, G. Wang, D. Cao, A heterogeneous interface on NiS@Ni3S2/NiMoO4 heterostructures for efficient urea electrolysis, Journal of Materials Chemistry A, 8 (2020) 18055-18063.

[19] H. Xu, K. Ye, K. Zhu, J. Yin, J. Yan, G. Wang, D. Cao, Efficient bifunctional catalysts synthesized from three-dimensional Ni/Fe bimetallic organic frameworks for overall urea electrolysis, Dalton Trans, 49 (2020) 5646-5652.

[20] W. Zhang, Q. Jia, H. Liang, L. Cui, D. Wei, J. Liu, Iron doped Ni3S2 nanorods directly grown on FeNi3 foam as an efficient bifunctional catalyst for overall water splitting, Chemical Engineering Journal, 396 (2020).

[21] Q. Zhang, F.M.D. Kazim, S. Ma, K. Qu, M. Li, Y. Wang, H. Hu, W. Cai, Z. Yang, Nitrogen dopants in nickel nanoparticles embedded carbon nanotubes promote overall urea oxidation, Applied Catalysis B-Environmental, 280 (2021). [22] J. Li, C. Yao, X. Kong, Z. Li, M. Jiang, F. Zhang, X. Lei, Boosting Hydrogen Production by Electrooxidation of Urea over 3D Hierarchical Ni4N/Cu3N Nanotube Arrays, Acs Sustainable Chemistry & Engineering, 7 (2019) 13278-13285.

[23] Z. Wu, X. Guo, Z. Zhang, M. Song, T. Jiao, Y. Zhu, J. Wang, X. Liu, Interface Engineering of MoS2 for Electrocatalytic Performance Optimization for Hydrogen Generation via Urea Electrolysis, ACS Sustainable Chemistry & Engineering, 7 (2019) 16577-16584.

[24] B. Zhang, S. Wang, Z. Ma, Y. Qiu, Ni0-rich Ni/NiO nanocrystals for efficient water-to-hydrogen conversion via urea electro-oxidation, Applied Surface Science, 496 (2019).

[25] H. Qin, Z. Ye, X. Wei, X. Liu, X. Liu, J. Fan, Z. Wen, S. Mao, Bifunctional Electrolyzation for Simultaneous Organic Pollutant Degradation and Hydrogen Generation, ACS ES&T Engineering, 1 (2021) 1360-1368.

[26] Y. Tong, L. Chen, P.J. Dyson, Z. Fei, Boosting hydrogen production via urea electrolysis on an amorphous nickel phosphide/graphene hybrid structure, Journal of Materials Science, 56 (2021) 17709-17720.