Supporting Information

Rational Design of a Self-Supporting Skeleton Decorated with Dual Lithiophilic Sn-Containing and N-Doped Carbon Tubes for Dendrite-free Lithium Metal Anode

Jiaxiao Ge,^a† *Jie Hong,^a*† *Tiancun Liuab** *and Yong Wangac**

^aDepartment of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China

^bSchool of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China, Email address: liutc@zstu.edu.cn ^cKey Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, 99 Shangda Road, Shanghai 200444, People's Republic of China, Email address: yongwang@shu.edu.cn

†These authors contributed equally to this work.

Fig. S1. SEM images of (a-c) NF, (d-f) precursor, (g-i) NF@Sn/C and (j-l) NF@C at different magnifications.

Fig. S2. TEM image of DLCTs with the bamboo-like structure and visible Sn particles.

Fig. S3. Elemental mapping images of the precursor. It can be clearly observed that there are homogeneous distributions of Ni, Sn, C and O elements in the precursor.

Fig. S4. Elemental mapping images of the as-prepared NF@Sn/C. Specially, there are homogeneous distributions of Ni, Sn and C elements in the as-prepared NF@Sn/C.

Fig. S5. Cross-section elemental mapping images of the as-prepared DLCTs. It reveals that the Sn-containing and N-doped carbon tubes covered uniformly on the NF surface in the as-prepared DLCTs.

Fig. S6. XRD patterns of (a) the precursor, (b) SnO₂@GLC and (c) NF@Sn/C. Notably, three obvious peaks located at 45.3° , 52.7° and 77.3° are ascribed to the metallic Ni (Fig. S6a), and four peaks located at 26.8° , 33.9° , 51.9° and 64.7° could be attributed to SnO² (**Fig. S6b**).

Fig. S7. XPS spectra of the DLCTs. There are five types of elements to investigate the surface characterization in the XPS spectra, namely C, Ni, Sn, N, and O respectively.

Fig. S8. (a) Coulombic efficiency profiles of NF, NF@Sn/C and DLCTs at a fixed current density of 1 mA cm⁻² with an areal capacity of 3 mAh cm⁻², and the corresponding voltage-time profiles of (b) DLCTs, (c) NF@Sn/C and (d) NF.

Fig. S9. Coulombic efficiencies of NF, NF@Sn/C and DLCTs: (a) 10 mA cm⁻² with 3 mAh cm⁻², (b) 5 mA cm⁻² with 5 mAh cm⁻² and (c) 3 mA cm⁻² with 6 mAh cm⁻².

Fig. S10. Voltage-time profiles of NF, NF@Sn/C and DLCTs: (a) 3 mA cm-2 with 1 mAh cm⁻² and (b) 8 mA cm⁻² with 1 mAh cm⁻².

Fig. S11. (a) SEM images of DLCTs loaded with the Li metal of 10 mAh cm-2 . SEM images of DLCTs@Li electrode after (b) 25 and (c-d) 50 cycles at 5 mA cm-2 with 5 mAh cm⁻².

Fig. S12. (a) Electrochemical performances of full cells with high LiFePO₄ loading of 30 mg cm-2 at the current density of 2 C. (b) Related plots of specific capacity and capacity retention at various cycles.

Table S1 Electrochemical properties comparison of DLCTs and relative threedimensional porous frameworks obtained by modifying Ni foam (NF) or Cu foam (CF).

References for Table S1

- 1 Y. Ye, Y. T. Liu, J. L. Wu, Y. F. Yang, *J. Power Sources*, 2020, **472**, 228520.
- 2 X. Huang, X. Y. Feng, B. Zhang, L. Zhang, S. C. Zhang, B. Gao, P. K. Chu, K. F. Huo, *ACS Appl. Mater. Interfaces*, 2019, **11**, 31824-31831.
- 3 Z. Zhang, J. L. Wang, X. F. Yan, S. L. Zhang, W. T. Yang, Z. H. Zhuang, W. Q. Han, *Energy Storage Mater.*, 2020, **29**, 332-340.
- 4 Z. P. Zeng, W. Li, X. J. Chen, X. B. Liu, *Adv. Funct. Mater.*, 2020, **30**, 2004650.
- 5 N. Luo, G. J. Ji, H. F. Wang, F. Li, Q. C. Liu, J. J. Xu, *ACS Nano*, 2020, **14**, 3281- 3289.
- 6 C. Z. Sun, Y. P. Li, J. Jin, J. H. Yang, Z. Y. Wen, *J. Mater. Chem. A*, 2019, **7**, 7752- 7759.
- 7 X. Y. Yue, W. W. Wang, Q. C. Wang, J. K. Meng, Z. Q. Zhang, X. J. Wu, X. Q. Yang, Y. N. Zhou, *Energy Storage Mater.*, 2018, **14**, 335-344.
- 8 Y. Ma, Y. X. Jing, Y. T. Gu, P. W. Qi, Y. B. Lian, C. Yang, A. A. Razzaq, X. H. Zhao, Y. Peng, X. Q. Zeng, J. S. Li, Z. Deng, *ACS Appl. Mater. Interfaces*, 2020, **12**, 9355-9364.
- 9 X. Ke, Y. H. Liang, L. H. Ou, H. D. Liu, Y. M. Chen, W. L. Wu, Y. F. Cheng, Z. P. Guo, Y. Q. Lai, P. Liu, Z. Shi, *Energy Storage Mater.*, 2019, **23**, 547-555.