Supporting Information

Increasing unsaturated Se number and facilitating atomic hydrogen adsorption of WSe_{2+x} nanodot for improving photocatalytic H₂ production of TiO₂

Duoduo Gao,^a Wei Zhong,^a Xuefei Wang,^a Feng Chen^a and Huogen Yu *a,b

^a State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P.R. China

^b Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P.R. China

Tel: 0086-27-65277083, Fax: 0086-27-87879468

E-mail: huogenyu@163.com (H.Yu)

Number of pages: 21

Number of Tables: 3

Number of Figures: 10

Supporting Information Content

Experiment	S3
Table S1	S8
Table S2	S9
Table S3	S10
Fig. S1	S11
Fig. S2	S12
Fig. S3	S13
Fig. S4	S14
Fig. S5	S15
Fig. S6	S16
Fig. S7	S17
Fig. S8	S18
Fig. S9	S19
Fig. S10	S20
References	S21

EXPERIMENTAL SECTION

SI-1 Preparation of g-C₃N₄ and CdS photocatalysts

The g-C₃N₄ photocatalyst was obtained by a simple calcination-hydrothermal procedure via using melamine powder as the precursor. According to previous studies, the melamine precursor was calcined at 550 °C for 4 h in ambient atmosphere to obtain the bulk g-C₃N₄. To increase its specific surface area, the as-prepared g-C₃N₄ sample was further treated by a hydrothermal method. In briefly, 0.5 g of the calcined g-C₃N₄ powder was dispersed into 70 mL of deionized water, then stirred at room temperature for 1 h, and finally maintained at 180 °C for 12 h. After cooling down to room temperature, the resulting sample was washed for several times, and then dried at 60 °C for overnight to obtain the g-C₃N₄ photocatalyst.

The CdS photocatalyst was synthesized by a frequently-used precipitation method. In brief, 140 mL of 0.1 mol L⁻¹ Na₂S solution was added into 140 mL of 0.1 mol L⁻¹ Cd(NO₃)₂ solution. The resulting suspension was vigorously stirred at room temperature for 2 h and then it was allowed to stay for overnight. The orange-red precipitate was collected by filtration, rinsed with plenty of deionized water, and dried at 60 °C for 24 h to obtain the CdS photocatalyst.

SI-2 Synthesis of Se-enriched WSe_{2+x}/g-C₃N₄ and WSe_{2+x}/CdS photocatalysts

The Se-enriched WSe_{2+x} -modified CdS and $g-C_3N_4$ photocatalysts can be obtained by a similar procedure as the WSe_{2+x}/TiO_2 via employing CdS and $g-C_3N_4$ as the raw materials, respectively (the preparation process of CdS and g-C₃N₄ photocatalysts are shown in SI-1). In this case, the mass ratio of W to CdS (or g-C₃N₄) is regulated to be 3 wt% (W: Se = 1:8). After the suspension is bubbled with nitrogen for 0.5 h, the above system is irradiated via four illuminator (420 nm) to induce the simultaneous photodeposition of Se-rich WSe_{2+x} and its H₂-evolution. The hydrogengeneration rate is evaluated by the gas chromatograph (GC-2014C, Shimadzu, TCD). After that, the precipitations are washed and dried in vacuum oven (50 °C, 12 h). In this case, the attained samples are referred as WSe_{2+x}/CdS or WSe_{2+x}/g-C₃N₄, respectively.

SI-3 Synthesis of a-MSe_{2+x}/TiO₂ (M = Cu, Fe, Co, Ni or Mo) photocatalysts

The Se-enriched a-MSe_{2+x}-modified TiO₂ (M = Cu, Fe, Co, Ni or Mo) photocatalysts were also prepared under identical procedure as the $WSe_{2+x}/TiO_2(3wt\%)$. Herein, the WCl₅ was replaced by CuCl₂, FeCl₃, CoCl₃, NiCl₂ and MoCl₅, respectively.

SI-4 The AQE calculation

The apparent quantum efficiency (AQE) of $WSe_{2+x}/TiO_2(3wt\%)$ photocatalyst is calculated via the following equation:

$$AQE(\%) = \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100\%$$
$$= \frac{\text{number of evolved H}_2 \text{ molecules} \times 2}{\text{number of incident photons}} \times 100\%$$

The average power of the UV light (four 3-W 365 nm) was 19 mW/cm², which was

detected by an irradiatometer (UV-B, Beijing Normal University Optical Instrument). Hence, the AQE can be calculated to be 18.1%.

SI-5 The TON calculation

Turnover number (TON) of WSe_{2+x} nanoclusters for the $WSe_{2+x}/TiO_2(3wt\%)$ photocatalyst is calculated via the following equation:

$$TON = \frac{2 \times \text{the moles of evolved H}_2}{\text{the moles of cocatalyst on photocatalyst}}$$

According to the inductively coupled plasma-optical emission spectrometry, it is found that the WSe_{2+x} amount in the WSe_{2+x}/TiO₂(3wt%) is 11.61 wt% (2.67 wt% for W, and 8.94 wt% for Se). Therefore, for 50 mg of the WSe_{2+x}/TiO₂(3wt%) photocatalyst used in photocatalytic H₂-evolution reaction, the true WSe_{2+x} amount can be calculated to be 5.80 mg, corresponding to 7.25 µmol. In addition, the total amount of H₂ generation of WSe_{2+x}/TiO₂(3wt%) was 2262.48 µmol for 12 h. Therefore, the TON can be calculated as following: 2262.48 µmol × 2 / 7.25 µmol = 624.13.

SI-6 DFT calculations

The density functional theory (DFT) calculations were carried out by using the Vienna Ab initio Simulation Package (VASP). The exchange–correlation interaction was described by generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional. The energy cutoff and Monkhorst–Pack k-point mesh were set as 450 eV and $3 \times 3 \times 1$, respectively. The convergence threshold was set as 10^{-5} eV for energy and $0.01 \text{ eV} \cdot \text{Å}^{-1}$ for force. For the construction of surface models, a vacuum of 20 Å was used to ensure that no appreciable interaction occurred between periodic structures. The Gibbs free energy of H atom adsorption (ΔG_{H^*}) was defined as $\Delta G_{\text{H}^*} = \Delta E_{\text{H}^*} + \Delta E_{\text{ZPE}} - T\Delta S_{\text{H}}$. The entropy of H₂ gas at 298 K is 130 J·mol⁻¹·K⁻¹. Therefore, $T\Delta S_{\text{H}}$ was calculated to be -0.20 eV. During the geometry optimization, the bottom half of W and Se atoms were fixed, while other atoms were relaxed. W-vacancy WSe₂ model was constructed by removing a surface W atom in the WSe₂ (001) model. Se-attached WSe₂ model was created via adsorbing a surface Se atom in the WSe₂ (001) model.

SI-7 Photoelectrochemical measurements

The photoelectrochemical properties were conducted on a CHI660E electrochemical workstation (Chenhua Instrument, Shanghai, China) in a standard three-electrode system by using Na_2SO_4 (0.5 M) as the electrolyte solution, where the photocatalyst-coated FTO (fluorine-doped tin oxide substrate), Ag/AgCl and platinum wire act as the working electrode, reference electrode and counter electrode,

respectively. High-purity N_2 was purged into the three-electrode cell for 15 min to remove O_2 before all the testing. The light source was provided by one 3-W LED irradiator (365-nm, Shenzhen Lamplic Science Co. Ltd.).

The working electrodes were prepared on FTO substrate with an active area of about 1.0 cm², where the side of FTO glass is protected by Scotch tape. First, FTO glass was washed with deionized water and ethanol for three times, respectively, and then was dried at 40 °C for 12 h. Second, 10 mg of photocatalyst was dispersed into a Nafion-ethanol solution with 1 mL D-520 Nafion (5%, w/w, in water and 1-propanol, Alfa Aesar) and 1 mL anhydrous ethanol, and subsequently ultrasonicated for 30 min to obtain a suspension solution. Finally, the above suspension was coated on the FTO surface to form a uniform film (with a thickness of 5-10 μ m) and then dried at 40 °C for 12 h.

The linear sweep voltammetry (LSV) curves were measured at the potential ranging from -0.8 to -1.4 (*vs* Ag/AgCl) with a scan rate of 10 mV s⁻¹. The transient photocurrent responses with time (*i-t* curve) can be achieved at a bias potential of +0.5 V during repeated ON/OFF illumination cycles. The electrochemical impedance spectroscopy (EIS) was carried out in the frequency range of 0.001 Hz-10⁶ Hz with an ac amplitude of 10 mV at the open circuit voltage.

Samples	Se (at. %)	W (at. %)	Se/W
TiO ₂	0	0	0
Se-enriched WSe _{2+x} /TiO ₂ (3wt%)	8.94	2.67	3.35
Amorphous WSe ₂ /TiO ₂ (3wt%)	5.32	2.46	2.16
Crystalline WSe ₂ /TiO ₂ (3wt%)	4.83	2.54	1.90

 Table S1 The ICP-OES results (atom %) for different photocatalysts

Photocatalyst	Cocatalysts	Sacrificial agent	Light source	Activity (µmol/h/g)/AQE	Ref.
TiO ₂	WSe _{2+x}	ethanol-water	3 W LED 365 nm	3770.80/18.10%	This work
TiO ₂	MoS_2	methanol-water	3.5 W LED 365 nm	2443/8.30%	1
TiO ₂	NiCoP	methanol-water	300 W Xe lamp	1540	2
TiO ₂	MoC	methanol-water	3 W LED 365 nm	504/1.4%	3
TiO ₂	Fe-Ni	ethanol-water	500 W Xe lamp $\lambda > 400$	361	4
TiO ₂	CoS_x	triethanolamine-water	nm 3 W LED 365 nm	2394	5
TiO ₂	a-CoMoS _x	ethanol-water	500-W high- pressure mercury	2160	6
TiO ₂	Cu _x P	methanol-water	UV-PC Hg lamp	1870/7.70%	7
TiO ₂	Cu(OH) ₂	methanol-water	500 W Xe lamp	1994	8
TiO ₂	NiS	methanol	350 W Xe lamp	655	9
TiO ₂	Ni	triethanolamine-water	UV-visible	1160	10

Table S2 Comparisons of photocatalytic H_2 -evolution activity for low-cost

cocatalyst-modified TiO_2

three-exponential function.								
Samples	$ au_1$ (ns)	A ₁ (%)	$ au_2$ (ns)	A ₂ (%)	τ ₃ (ns)	A ₃ (%)	Average lifetime $(\boldsymbol{\tau}_a)$ (ns)	χ^2
TiO ₂	0.45	54.11	2.24	42.13	19.60	3.79	8.69	1.08
Se-enriched WSe _{2+x} /TiO ₂	0.40	74.14	3.43	46.85	20.53	15.30	13.89	1.17
Amorphous WSe ₂ /TiO ₂	0.35	68.91	2.97	23.27	13.76	13.95	10.00	1.15
Crystalline WSe ₂ /TiO ₂	0.37	63.98	3.26	28.00	15.47	8.02	9.31	1.07

Table S3 Fluorescence emission lifetime and relevant percentage data fitted by a

The above fitted parameters are acquired via the following tri-exponential formulas:

$$I_{(t)} = I_0 + A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2) + A_3 \exp(-t/\tau_3)$$
(1)

$$\tau_{a} = (A_{1}\tau_{1}^{2} + A_{2}\tau_{2}^{2} + A_{3}\tau_{3}^{2})/(A_{1}\tau_{1} + A_{2}\tau_{2} + A_{3}\tau_{3})$$
(2)

where I_0 is the baseline correction value, A_1 , A_2 and A_3 represent the tri-exponential factors, and τ_1 , τ_2 , τ_3 and τ_a corresponding the lifetime in various stages (radiation, non-radiation and energy transfer) and average lifetime, χ^2 is the goodness-of-fit.

Fig. S1 The effect of Se/W ratios on the H₂-evolution activity of Se-enriched $WSe_{2+x}/TiO_2(3wt\%)$: (a) 0:0; (b) 0:1, (c) 0.2:1, (d) 1:1, (e) 2:1, (f) 4:1, (g) 8:1, (h) 10:1, (i) 12:1, and (j) 8:0.

Fig. S2 FESEM images of (a) TiO_2 , (b) Se-enriched $WSe_{2+x}/TiO_2(3wt\%)$, (c) amorphous $WSe_2/TiO_2(3wt\%)$, and (d) crystalline $WSe_2/TiO_2(3wt\%)$.

Fig. S3 EDX spectrum of Se-enriched WSe_{2+x}/TiO₂(3wt%).

Fig. S4 Structure models from DFT calculations for various WSe₂ with different H-adsorbed states (Front, side and top views).

Fig. S5 The total density of states (TDOS) of WSe_2 and WSe_{2+x} with W-vacancy and Se-adhesion.

Fig. S6 Schematic illustration of the unsaturated selenium-enriched regulation to increase the active-site number of WSe_{2+x} cocatalyst by (1) unsaturation of in-plane Se atoms and (2) unsaturated Se enrichment.

Fig. S7 The detailed interfacial H₂-evolution process on the active $Se^{(2-\delta)^-}$ sites of WSe_{2+x}/TiO_2 : a) H⁺ adsorption; b) H⁺ reduction by delivered photoelectrons; c, d) H₂ formation and desorption.

For better understanding the enhanced interfacial H₂-evolution process, a more detailed mechanism showing the hydrogen-evolution route has been proposed (Fig. S7). First, the electron-poor Se^{(2- δ)-} active sites on WSe_{2+x} cocatalyst can effectively adsorb positive H⁺ ions from the reaction system via Se^{(2- δ)-}-H⁺ interaction (Fig. S7a). Subsequently, the adsorbed H⁺ ions on the WSe_{2+x} surface can be rapidly reduced by the delivered photoelectrons of WSe_{2+x} to form the adsorbed atomic hydrogen (Se^{(2- δ)-}-H_{ads}) on the Se^{(2- δ)-} sites (Fig. S7b). After that, the adsorbed atomic hydrogen can effectively bond with adjacent atomic hydrogen (Fig. S7c) and finally desorb to produce H₂ gas (Fig S7d). Therefore, the above electron-poor Se^{(2- δ)-}-mediated hydrogen-generation cycle can greatly enhance the photocatalytic hydrogen-production performance of WSe_{2+x}/TiO₂.

Fig. S8 (a, b) UV-vis absorption spectra of (1) $g-C_3N_4$, (2) Se-enriched WSe_{2+x}/g-C₃N₄(3wt%), (3) CdS, and (4) Se-enriched WSe_{2+x}/CdS(3wt%).

Fig. S9 (a–d) FESEM images of (a) g-C₃N₄, (b) Se-enriched WSe_{2+x}/g-C₃N₄(3wt%),

(c) CdS, and (d) Se-enriched $WSe_{2+x}/CdS(3wt\%)$.

Fig. S10 (a–e) FESEM images of selenium-enriched (a) a-CuSe_{1+x}/TiO₂(3wt%), (b) a-FeSe_{1+x}/TiO₂(3wt%), (c) a-CoSe_{1+x}/TiO₂(3wt%), (d) a-NiSe_{1+x}/TiO₂(3wt%), and (e) a-MoSe_{2+x}/TiO₂(3wt%).

References

- W. Wang, S. Zhu, Y. Cao, Y. Tao, X. Li, D. Pan, D. L. Phillips, D. Zhang, M. Chen, G. Li and H. Li, *Adv. Funct. Mater.*, 2019, **29**, 1901958.
- 2 R. Song, W. Zhou, B. Luo and D. Jing, Appl. Surf. Sci., 2017, 416, 957-964.
- 3 J. Liu, P. Wang, J. Fan and H. Yu, J. Energy Chem., 2020, 51, 253-261.
- 4 T. Sun, J. Fan, E. Liu, L. Liu, Y. Wang, H. Dai, Y. Yang, W. Hou, X. Hu and Z. Jiang, *Powder Technol.*, 2012, **228**, 210-218.
- 5 F. Chen, W. Luo, Y. Mo, H. Yu and B. Cheng, *Appl. Surf. Sci.*, 2018, **430**, 448-456.
- 6 Y. Xue, S. Min, J. Meng, X. Liu, Y. Lei, L. Tian and F. Wang, *Int. J. Hydrogen Energy*, 2019, **44**, 8133-8143.
- J. Xu, W. Zhong, H. Yu, X. Hong, J. Fan and J. Yu, J. Mater. Chem. C, 2020, 8, 15816-15822.
- 8 H. She, X. Ma, K. Chen, H. Liu, J. Huang, L. Wang and Q. Wang, J. Alloys Compd., 2020, 821, 153239.
- 9 F. Xu, L. Zhang, B. Cheng and J. Yu, ACS Sustainable Chem. Eng., 2018, 6, 12291-12298.
- 10 P. D. Tran, L. Xi, S. K. Batabyal, L. H. Wong, J. Barber and J. S. Chye Loo, *Phys. Chem. Chem. Phys.*, 2012, 14, 11596-11599.