Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

1 Supporting Information for

2 Na⁺/Vacancy Disordered Manganese-Based Oxide Cathode with

3 Ultralow Strain Enabled by Tuning Charge Distribution

4 Siyuan Li,^{a,#} Yangyang Zhang,^{a,#} Kaixiang Lei,^{a,*} Qian Yang,^a Zheng Liu,^a

5 Kezhu Jiang,^{a,*} Fujun Li,^b Qiongqiong Lu,^c Daria Mikhailova,^c Shijian Zheng^{a,*}

6 a State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of

7 Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China

8 ^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College

9 of Chemistry, Nankai University, Tianjin 300071, China

10 ° Leibniz Institute for Solid State and Materials Research (IFW), Dresden e.V, Helmholtzstraße

11 20, D-01069, Dresden, Germany

12 [#]These authors contributed equally to this work.

13

14 *To whom correspondence should be addressed. E-mail: kaixianglei@hebut.edu.cn;

15 sjzheng@hebut.edu.cn; fujunli@nankai.edu.cn

16

2 Fig. S1. XRD patterns of $Na_{0.67}Sn_xMn_{1-x}O_2$ (x=0, 0.05, 0.07, 0.10).

- 1
- 2 Fig. S2. SEM images of (a) NMO and (b) NSMO.

2 Fig. S3. Enlarged XRD patterns of NMO and NSMO from 12° to 18° .

2 Fig. S4. Structural evolution of NMO electrode. (a) In-situ XRD patterns. (b) Illustration of phase transition

3 during cycles. (c) Volume variations upon Na^+ extraction and insertion.

2 Fig. S5. Enlarged *in-situ* XRD patterns of (a) NMO and (b) NSMO between 20° and 30°.

2 Fig. S6. Rietveld refinement profiles of the powder XRD data for the charged (a) NSMO and (b) NMO3 electrodes.

2 Fig. S7. Rietveld refinement of powder XRD data for (a) NSMO and (b) NMO electrodes cycled at 1.5 V.
3

2 Fig. S8. (a) HRTEM image of NSMO after 10 cycles and (b-f) the corresponding EDS elemental mappings.

2 Fig. S9. Top view of the Na layers for (a) NMO and (b) NSMO based on XRD refined data.

2 Fig. S10. Charge compensation mechanism of NSMO characterized by ex-situ XPS. (a) Mn 2p spectra. (b)

3 Sn 3d spectra. (c) O 1s spectra.

- 1
- 2 Fig. S11. (a) Trajectories of Na^+ in NMO simulated at 900 K. (b) Top view of Na layer.
- 3

2 Fig. S12. The calculated DOS for NSMO (a) and NMO (b).

2 Fig. S13. (a) GITT curves of NMO and NSMO. The linear relationship between voltage (E) and square root

3 of resting time (Time^{1/2}) for (b) NSMO and (d) NMO. (c) Current step diagram of the first desodiation of

4 NMO at 2.535 V.

5

2 Fig. S14. CV curves of (a) NSMO and (b) NMO electrodes at different scan rates. Fitted plots of peak current

- 3 (Ip) versus scan rate ($v^{0.5}$) square root for (c) NSMO and (d) NMO electrodes.
- 4

2 Fig. S15. EIS plots of NSMO and NMO (a) at open-circuit voltage and (b) after 1 cycle and (c) ten cycles.
3

2 Fig. S16. CV curves of (a) NMO and (b) NSMO electrodes measured at 0.1 mV s⁻¹ within 1.5-4.0 V.
3

Fig. S17. (a) Cycle performance of NSMO and $Na_{0.67}Sn_{0.10}Mn_{0.90}O_2$ and (b) their selected charge/discharge curves.

2 Fig. S18. (a) Charge/discharge profiles and (b) cycle performance of NSMO//HC full cells.

2 Fig. S19. EIS plots of NSMO and NMO at (a) -20 °C, (b) 0 °C, (c) 20 °C, (d) 40 °C, (e) 60 °C and (f) 70 °C

- 3 under open-circuit voltage.
- 4

Atom	Site	Occupancy	X	У	Z
Na _f	4c	0.25(9)	0	0.113	0.250
Na _e	4c	0.41(1)	0	0.673	0.250
Mn	4a	0.95(5)	0	0	0
Sn	4a	0.45(5)	0	0	0
0	8f	1	0	0.675	0.890

1 Table S1. Lattice parameters of NSMO based on Rietveld refinement.

Space group: *Cmcm*, a = 2.830 Å, b = 5.231 Å, c = 11.420 Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 169.059 Å³, Rwp = 4.3%

1 Table S2. Lattice parameters of NMO based on Rietveld refinement.

Atom	Site	Occupancy	X	У	Z
Na _f	4c	0.21(9)	0	0.236	0.250
Na _e	4c	0.45(1)	0	0.696	0.250
Mn	4a	1	0	0	0
0	8f	1	0	0.669	0.899

Space group: *Cmcm*, a = 2.831 Å, b = 5.240 Å, c = 11.209 Å, α = β = γ = 90°, V = 166.279 Å³, Rwp = 4.3%

Table S3. Mn-O bond length, TMO₂ layer thicknesses, Na interlayer spacings, and distances between
 adjacent Mn columns for NSMO and NMO.

	d _(Mn-O)	d _(MnO2)	d _(O-Na-O)	d _(interslab)
NSMO (Å)	2.01/1.95	2.20	3.42	5.71
NMO (Å)	2.07/2.01	2.26	3.34	5.60
Change ratio	2.99%/3.08%	2.72%	2.34%	1.92%

Atom	Site	Occupancy	X	У	Z
Na _f	2d	0.04(1)	0.667	0.333	0.250
Na _e	2c	0.10(2)	0.333	0.667	0.250
Na1	2a	0.05(1)	0	0	0.5
Mn	4f	0.95	0.667	0.333	0.360
Sn	4f	0.05	0.667	0.333	0.360
01	4f	0.5	0.333	0.667	0.415
02	4e	0.5	0	0	0.296

1 Table S4. Refined structural parameters of OP4 phase in the charged NSMO electrode.

Space group: *P63/mmc*, a = 2.952 Å, b = 2.952 Å, c = 22.188 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, V = 167.449 Å³, $\Delta V_{0}^{\circ} = 0.95^{\circ}$, Rwp = 1.9%

Sample	Atom	Site	Occupancy	X	У	Ζ
	Na _f	4c	0.45(2)	0	1.712	0.250
NSMO	Na _e	4c	0.47(6)	0	-4.154	0.250
	Mn	4a	0.94(3)	0	0	0
	Sn	4a	0.05(7)	0	0	0
	0	8f	1	0	1.473	-2.387
	Na _f	4c	0.45(9)	0	0.645	0.250
NMO	Na _e	4c	0.51(1)	0	0.646	0.250
	Mn	4a	1	0	0	0
	0	8f	1	0	0.199	-0.047

1 Table S5. Refined structural parameters of P"2 phase in the discharged NSMO and NMO electrodes.

Space group: NSMO: *Cmcm*, a = 2.89 Å, b = 5.42 Å, c = 10.74 Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 168.23 Å³, $\Delta V\% = 0.49\%$, Rwp = 4.5%; **NMO:** *Cmcm*, a = 2.89 Å, b = 5.66 Å, c = 10.89 Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 178.13 Å³, $\Delta V\% = 7.1\%$, Rwp = 8%

Phase	Atom	Site	Occupancy	X	У	Ζ
	Na _f	2d	0.02(7)	0.667	0.333	0.250
OP4	Na _e	2c	0.06(8)	0.333	0.667	0.250
	Na1	2a	0.03(5)	0	0	0.5
	Mn	4f	1	0.667	0.333	0.373
	01	4f	0.5	0.333	0.667	0.402
	02	4e	0.5	0	0	0.328
P2	Na _f	4f	0.00(5)	0.333	0.667	0.582
	Na _e	2b	0.00(5)	0	0	0.250
	Mn	2a	1	0	0	0
	0	4f	1	0.333	0.667	0.582

1 Table S6. Refined structural parameters of OP4 and P2 phases in the charged NMO electrode.

Space group: OP4: *P63/mmc*, a =2.99 Å, b = 2.99 Å, c = 18.87 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, V = 146.30 Å³, $\Delta V\% = 12\%$, Rwp = 3.6%, *wt%* = 83.8%; **P2:** *P63/mmc*, a = 2.82 Å, b = 2.82 Å, c = 11.24 Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 77.32 Å³, $\Delta V\% = 53.5\%$, Rwp = 3.6%, *wt%* = 16.2%

Table S7. Distances and angles between Na_f and Na_e in Na layers for P2-NMO, P'2-NMO and P'2-NSMO
 based on Rietveld refinement.

Sample	a (°)	L1 (Å)	L2 (Å)	ΔL (Å)
P2-NMO	60.0	1.6	3.3	1.7
P'2-NMO	20.5	2.1	3.2	1.1
P'2-NSMO	14.7	2.3	3.0	0.7

	Peak	NSMO (cm ² s ⁻¹)	NMO (cm ² s ⁻¹)
	1	2.25×10 ⁻¹⁰	2.97×10 ⁻¹¹
	2	2.26×10 ⁻¹¹	1.20×10 ⁻¹¹
2 3			

Materials	Cyclability (capacity	Rate Capability	Ref
	retention)		
NSMO	131.2 mAh g ⁻¹ (71.63%)	218.4 mAh g ⁻¹ at 10 mA g ⁻¹	This
	after 200 cycles at 50 mA g ⁻¹	143.2 mAh g ⁻¹ at 500 mA g ⁻¹	work
poly(diphenylaminesulfonic	72 mAh g ⁻¹ (70%) after 100	92 mAh g ⁻¹ at 100 mA g ⁻¹	50
acid sodium) (PDS)	cycles at 50 mA g ⁻¹	75 mAh g ⁻¹ at 200 mA g ⁻¹	
	100 mAh g ⁻¹ (90%) after 240	120 mAh g ⁻¹ at 7.7 mA g ⁻¹	51
NaFePO ₄	cycles at 15.4 mA g ⁻¹	46 mAh g ⁻¹ at 308 mA g ⁻¹	
$Na_{0.7}Mn_{0.6}Ni_{0.3}Co_{0.1}O_2$	69.6 mAh g ⁻¹ (58%) after 20	120 mAh g ⁻¹ at 9 mA g ⁻¹	52
	cycles at 9 mA g ⁻¹	80 mAh g ⁻¹ at 185 mA g ⁻¹	
$Na_{0.66}(Mn_{0.54}Co_{0.13}Ni_{0.13})O_2$	60.5 mA g ⁻¹ (50%) after 100	121 mAh g ⁻¹ at 160 mA g ⁻¹	53
	cycles at 160 mA g ⁻¹	94 mAh g ⁻¹ at 800 mA g ⁻¹	
Na _{0.44} MnO ₂	75.0 mA g ⁻¹ (63%) after 60	102 mAh g ⁻¹ at 60 mA g ⁻¹	54
	cycles at 24.2 mA g ⁻¹	98 mAh g ⁻¹ at 121 mA g ⁻¹	

1 Table S9. Electrochemical performance comparison of some reported cathodes in SIBs.