Electronic Supplementary Information (ESI) for

Dendrite-suppressed and utilization-improved metallic Li anode

enabled by lithiophilic nano-Pb decoration on carbon cloth

Peng Du,^a Chenbo Yuan,^a Xiaoyu Cui,^b Kaifu Zhang,^a Yu Yu,^a Xiaodi Ren,^c Xiaowen Zhan,^{*a,b} and Shan Gao^{*a}

^aSchool of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Chemistry for

Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional

Regulation of Hybrid Materials of Ministry of Education, Anhui University, 230601 Hefei, Anhui,

P.R. China

Email: xiaowen.zhan@ahu.edu.cn (X.Z.); shangao@ahu.edu.cn (S.G.)

^bSchool of Materials Science and Engineering, Anhui University, 230601 Hefei, Anhui, P.R. China

^cDepartment of Materials Science and Engineering, University of Science & Technology of China,

230026 Hefei, Anhui, P.R. China.

Figure S1. The wetting behavior of aqueous $Pb(Ac)_2 \cdot 3H_2O$ solution on carbon cloth with (left) and without (right) alcohol pre-treatment.

Figure S2. In-situ Raman spectra for the heat treatment of $Pb(Ac)_2$ ·3H₂O.

Raman shift(cm ⁻¹)	Vibration name	Vibration mode		
1328.78	D-bond	Amorphous carbon		
1578.14	G-bond	Graphitized carbon		
143.88	V _s (Pb-O)	Pb-O stretch		
216.93	<i>V_s</i> (Pb-O)	Pb-O stretch		
657.15	δ_s (COO)	COO symmetric deformation		
940.27	<i>V_s</i> (C-C)	C-C symmetric stretch		
1351.35	δ_s (CH ₃)	CH ₃ symmetric deformation		
1424.86	<i>V_s</i> (C-O)	C-O symmetric stretch; C-O		
1539.21	<i>V</i> _{as} (C-C)	C-O anti-symmetric stretch; C=O		
2940.81	Vas (CH3) CH3 symmetric stretch			

Figure S3. XPS Pb 4f spectrum of Pb@CC.

Sample conditions	Sample 1	Sample 2	Sample 3	Sample 4	Average values
Prisitne CCs (m0)	27.1 mg	26.8 mg	26.9 mg	26.5 mg	26.8 \pm 0.22 mg
CCs after 550 °C calcination	21.9 mg	21.6	21.9 mg	21.4 mg	21.7 \pm 0.19 mg
(m1)	21.0 mg	21.0 mg			
CCs after Pb(Ac) ₂ ·3H ₂ O (aq.)					
immersion and 40 °C drying	31.7 mg	30.5 mg	31.2 mg	31.2 mg	31.2 ± 0.43 mg
(m2)					
Pb@CCs after 550 °C	2E 2 mg	24.7 mg	24.9 mg	24.6 mg	24.8 ± 0.22 m 5
calcination (m3)	25.2 mg	24.7 mg	24.8 Mg	24.0 mg	24.8 ± 0.23 mg

Table S2. The mass values of different samples under specified conditions during the Pb@CC fabrication process.

Note S1:

After immersion in Pb(Ac)₂·3H₂O solution and drying, the average mass loading of Pb(Ac)₂·3H₂O on CCs

is:

m(Pb(Ac)₂·3H₂O) =m2-m0= 31.2 mg-26.8 mg=4.4mg.

After final calcination, the average Pb/C loading is:

m(Pb+C)=m3-m1= 24.8 mg-21.7 mg=3.1mg.

Assuming all $Pb(Ac)_2 3H_2O$ decomposed into Pb and C, then the average Pb loading is:

m(Pb)=4.4 mg*207.2 g mol⁻¹/391.2 g mol⁻¹=2.3 mg,

The average C mass is then estimated to be about:

3.1-2.3=0.8 mg.

Figure S4. SEM images and EDX maps of the as-prepared Pb@CC. Scale bars: 5 $\mu m.$

Figure S5. The nitrogen adsorption and desorption isotherms of Pb@CC (inset: pore-size distribution curve).

Figure S6. Cross-sectional SEM images of (a) Pb@CC, (b) 2mg-Li@Pb@CC, (c) 10mg-Li@Pb@CC, (d) 20mg-Li@Pb@CC and (e) 45mg-Li@Pb@CC. Scale bars: 200 μm.

Figure S7. Cross-sectional EDS maps (a) Pb@CC, (b) 10mg-Li@Pb@CC and (c) 45mg-Li@Pb@CC. Scale bars: 200

Figure S8. Cycling performance of the Li symmetric cells assembled with Li foils and 10mg-Li@Pb@CC electrodes acquired at 5 mA cm⁻².

Figure S9. Rate performance of the Li symmetric cells assembled with 10mg-Li@Pb@CC electrodes. The duration was set at 1 h for each plating or stripping process.

Figure S10. The XRD pattern of 10mg-Li@Pb@CC.

Figure S11. The XPS spectra of 10mg-Li@Pb@CC: (h) Li1s and (i) Pb4f.

Figure S12. (a) EIS spectra of Li symmetric cells assembled with Li foil and 10mg-Li@Pb@CC electrodes. (b) The plots and fitting results for Z' and $\omega^{-1/2}$ extracted from the corresponding EIS data in the low-frequency regions.

Note S2: The diffusion coefficient of Li (D_{Li}) is calculated based on Eq. (1):

 $D=R_{2}T_{2}/2A^{2}n^{4}F^{4}C^{2}\sigma^{2}$ (1)

where R represents the gas constant, T the absolute temperature, A the specific surface area of the electrode, n the number of electron transfer in the redox process, F the Faraday constant, C the Li concentration, and σ the Warburg coefficient. The calculation results are as follows:

$$C_{(Li\,foil)} = \frac{m}{MV_{(Li\,foil)}} = \frac{0.065}{6.94 \times 0.8^2 \times 3.14 \times 0.06} = 0.077 \, mol \, cm^{-3}$$

$$D_{(Li\,foil)} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2} = \frac{8.3142^2 \times 298^2}{2 \times 2.0096^2 \times 1^4 \times 96500^4 \times 0.077^2 \times 5.18^2} = 5.51 \times 10^{-14} \, cm^2 \, s^{-1}$$

$$C_{(10mg - Li@Pb@CC)} = \frac{m}{MV_{(10mg - Li@Pb@CC)}} = \frac{0.010}{6.94 \times 0.6^2 \times 3.14 \times 0.04} = 0.033 \, mol \, cm^{-3}$$

$$D_{(10mg - Li@Pb@CC)} = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2} = \frac{8.3142^2 \times 298^2}{2 \times 1.1309^2 \times 1^4 \times 96500^4 \times 0.033^2 \times 0.39^2} = 1.67 \times 10^{-10} \, cm^2 \, s^{-1}$$

Raman shift (cm⁻¹)

Figure S13. Raman spectra analyzing the solid electrolyte interphase (SEI) of Li foil and 10mg-Li@Pb@CC electrodes after 50 cycles at 1 mA cm⁻².

Note S3: The Raman band at 1094 cm⁻¹ belongs to Li_2CO_3 .¹⁻³ Li_2CO_3 is one of the main inorganic SEI components. In addition, there are three signals at about 1249, 1375 and 1473 cm⁻¹, which may be related to different C-H vibration modes.⁴ Some of them indicate that olefin fragments (another common component of SEI) may have be generated.⁵ They also match the stretching $V_{p=0}$ mode of organic phosphorus compounds, such as $(CH_3)_2$ -P(=O)CH₃, P(=O)F₃ and PO₃²⁻⁶ Organic phosphates and derivative compounds are typical decomposition products as LiPF₆ can be decomposed to form POF₃, which then evolves into organic phosphate and organic fluorophosphate products. Another strong vibration peak is clearly seen at 1848 cm⁻¹, which points clearly to Li₂C₂.⁷ Finally, the peaks at 503 cm⁻¹ and 914 cm⁻¹ can be assigned to deformation vibrations of the SEI compounds.⁸

Figure S14. Cycling performance of the Li symmetric cells assembled with 2mg-Li@Pb@CC 10mg-Li@Pb@CC, 20mg-Li@Pb@CC and 45mg-Li@Pb@CC electrodes acquired at 1 mA cm⁻².

Figure S15. SEM images of the 45mg-Li@Pb@CC electrodes after 50 cycles at 1 mA cm⁻²/1 mAh cm⁻². Scale bars: 50 μ m for panel a and 2 μ m for panel b.

Figure S16. Voltage profiles for the 1st, 200th, 400th and 600th cycles of LFP-based full cells at 1 C with various Li loadings (N/P ratios): (a) Li foil, (b) 2mg-Li@Pb@CC, (c) 10mg-Li@Pb@CC, (d) 20mg-Li@Pb@CC and (e) 45mg-Li@Pb@CC.

 Table S3. Comparison in overpotential and cycle life of our 10mg-Li@Pb@CC electrodes with some representative

 Li anodes modified by various processing strategies from the literature. The testing conditions are 1 mA cm⁻² and

 1 mAh cm⁻².

Material	Electrolyte	Cycle stability	Overpotential	Refs.
Li-C	1 M LiPF ₆ in (EC/EMC, 3:7 wt %) with	500 h	46 mV	9
	2.0% VC			

Polished Li	1 M LiPF ₆ in	1 M LiPF ₆ in		
	EC:DEC	570 h	48 mV	10
	(1:1 vol %)			
	1 M LiPF_6 in			
LMC-Li	EC:DMC	1200 h	12 mV	11
	(1:1 vol %)			
	1.0 M $LiPF_6$ in			
Housed Li	FEC:DMC (1:1 vol %) with 1.1	950 h	25 mV	12
	wt % LiNO ₃			
	1M LiPF ₆ in EC/DMC/EMC			12
Li-cMOFs	(1:1:1 vol %)	700 h	29 mV	15
	1 M LiPF ₆ in EC/DMC/EMC			
Li-Ni@NiO-400	(1:1:1 vol %)	2000 h	13 mV	14
	1 M LiPF ₆ in	100 1	10 V	15
LCC Composite	EC/DEC (1:1 vol %).	400 h	10 mV	15
	1M LiPF ₆ in	600 h	100 m)/	16
C/SiNW/Li	EC/DEC (1:1 vol %).	600 n	100 mV	10
	1 M LiPF ₆ in	400 h	7E m\/	17
	EC/DEC (1:1 vol %).	400 11	75 111	
	1 M LiPF ₆ in	800h	~50 mV	18
LI/C-ALD	EC/DEC (1:1 vol %).	80011	50 111	-
Li-Ti₃C₂T _x -rGO	1 M LiPF ₆ in			
	EC/DMC/EMC	1400 h	26 mV	19
	(1:1:1 vol %)			
	1 M LiPF ₆ in			
10mg-Li@Pb@CC	EC/EMC (3:7 vol %)	4648 h	50 mV	

 Table S4. Comparison in full-cell performance and infusion time/temperature of 10mg-Li@Pb@CC electrodes with

 those from some representative reports in the literature.

N/P	Cathode	Anode	Cycle performance	Infusion time	Infusion temperature	Refs.
201.0~	1 10 m 4 h	347.4~385.9	1 C, 92.4 mAh/g			
291.9	9 1.19 MAN	mAh cm ⁻² ,	after 300 cycles	40 min	300 °C	20
324.30	CIII ⁻ , LFP	AC@CNT/Li	76.8%.			

20.2~25.9	0.595~0.7 65 mAh cm ⁻² , LFP	15.4 mAh cm ⁻² , Li@MgZnO/CNF	5 C, 78.2 mAh/g after 600 cycles 82%	25 s	300 °C	21
24.2	0.883 mAh cm ⁻² , LFP	21.4 mAh cm ⁻² , CF/Ag-Li	1 C, 86 mAh/g after 500 cycles 62.7%	2 min	300 °C	22
208.8	0.612 mAh cm ⁻² , LFP	127.4 mAh cm ⁻² , Li-Co ₃ O ₄ /NF	2 C, 102.4 mAh/g after 500 cycles 80.7%	5 s	350 °C	23
29.5~34.1	0.68 mAh cm ⁻² , LFP	23.2~30.9 mAh cm-2, Li/Mo composite	1 C, 136 mAh/g after 200 cycles 90.7%	4 s	350 ∘C	24
56.7	0.51 mAh cm ⁻² , LFP	28.9 mAh cm ⁻² , NPCC-Li	2 C, 120 mAh/g after 600 cycles 86.6%	4 s	315 °C	25
192.1	0.663 mAh cm ⁻² , LFP	127.4 mAh cm ⁻² , Li/Ag@Cu	0.5 C, 128 mAh/g after 200 cycles 88.2%	5 s	300 °C	26
41.4	1.5 mAh cm ⁻² , LFP	62.1 mAh cm ⁻² , Li-NiO/NF	0.5 C, 160 mAh/g after 100 cycles, >90%	6 s	360 °C	27
63.28	0.61 mAh cm ⁻² , LFP	38.6 mAh cm ⁻² , 10mg- Li@Pb@CC	1 C, 91.1 mAh/g after 600 cycles 66.2%	~1 s	250 °C	

References

- 1. S. Tang, Y. Gu, J. Yi, Z. Zeng, S.-Y. Ding, J.-W. Yan, D.-Y. Wu, B. Ren, Z.-Q. Tian and B.-W. Mao, *Journal of Raman Spectroscopy*, 2016, **47**, 1017-1023.
- 2. S. Hy, Felix, Y.-H. Chen, J.-y. Liu, J. Rick and B.-J. Hwang, *Journal of Power Sources*, 2014, **256**, 324-328.
- 3. K. Guo, R. Kumar, X. Xiao, B. W. Sheldon and H. Gao, *Nano Energy*, 2020, **68**, 104257.
- 4. M. J. Piernas-Munoz, A. Tornheim, S. Trask, Z. Zhang and I. Bloom, *Chem Commun (Camb)*, 2021, **57**, 2253-2256.
- 5. M. Guo, X. Jin and R. E. White, *Journal of The Electrochemical Society*, 2017, **164**, E3200-E3214.
- 6. S. Nowak and M. Winter, *Molecules*, 2017, **22**, 403.
- T. A. Galloway, L. Cabo-Fernandez, I. M. Aldous, F. Braga and L. J. Hardwick, *Faraday Discuss*, 2017, 205, 469-490.
- R. Schmitz, R. Ansgar Müller, R. Wilhelm Schmitz, C. Schreiner, M. Kunze, A. Lex-Balducci, S. Passerini and M. Winter, *Journal of Power Sources*, 2013, 233, 110-114.
- 9. C. Niu, H. Pan, W. Xu, J. Xiao, J. G. Zhang, L. Luo, C. Wang, D. Mei, J. Meng, X. Wang, Z. Liu, L. Mai and J. Liu, *Nat Nanotechnol*, 2019, **14**, 594-601.
- 10. W. Tang, X. Yin, Z. Chen, W. Fu, K. P. Loh and G. W. Zheng, *Energy Storage Materials*, 2018, **14**, 289-296.
- 11. Q. Liu, G. Zhu, R. Li, S. Lou, H. Huo, Y. Ma, J. An, C. Cao, F. Kong, Z. Jiang, M. Lu, Y. Tong, L. Ci, G. Yin and J. Wang, *Energy Storage Materials*, 2021, **41**, 1-7.

- X. Shen, X. Cheng, P. Shi, J. Huang, X. Zhang, C. Yan, T. Li and Q. Zhang, *Journal of Energy Chemistry*, 2019, 37, 29-34.
- 13. M. Zhu, B. Li, S. Li, Z. Du, Y. Gong and S. Yang, Advanced Energy Materials, 2018, 8, 1703505.
- 14. G. Li, S. Xu, B. Li, T. Xia, J. Yu, F. Shao, Z. Yang, Y. Su, Y. Zhang, J. Ma and N. Hu, *Journal of Power Sources*, 2021, **506**, 230161.
- 15. R. Zhang, Y. Li, M. Wang, D. Li, J. Zhou, L. Xie, T. Wang, W. Tian, Y. Zhai, H. Gong, M. Gao, K. Liang, P. Chen and B. Kong, *Small*, 2021, **17**, e2101301.
- 16. P. Zhang, C. Peng, X. Liu, F. Dong, H. Xu, J. Yang and S. Zheng, *ACS Appl Mater Interfaces*, 2019, **11**, 44325-44332.
- S. Liu, X. Xia, Z. Yao, J. Wu, L. Zhang, S. Deng, C. Zhou, S. Shen, X. Wang and J. Tu, *Small Methods*, 2018, 2. 1800035.
- B. Zhao, B. Li, Z. Wang, C. Xu, X. Liu, J. Yi, Y. Jiang, W. Li, Y. Li and J. Zhang, ACS Appl Mater Interfaces, 2020, 12, 19530-19538.
- Y. Fang, Y. Zhang, K. Zhu, R. Lian, Y. Gao, J. Yin, K. Ye, K. Cheng, J. Yan, G. Wang, Y. Wei and D. Cao, ACS Nano, 2019, 13, 14319-14328.
- 20. J. Wang, H. Liu, H. Wu, Q. Li, Y. Zhang, S. Fan and J. Wang, *Carbon*, 2021, **177**, 181-188.
- 21. T. Le, Q. Liang, M. Chen, C. Yang, Z. Yu, J. Cheng, F. Kang and Y. Yang, *Small*, 2020, **16**, e2001992.
- 22. R. Zhang, X. Chen, X. Shen, X.-Q. Zhang, X.-R. Chen, X.-B. Cheng, C. Yan, C.-Z. Zhao and Q. Zhang, *Joule*, 2018, **2**, 764-777.
- 23. G. Huang, P. Lou, G.-H. Xu, X. Zhang, J. Liang, H. Liu, C. Liu, S. Tang, Y.-C. Cao and S. Cheng, *Journal of Alloys* and Compounds, 2020, **817**, 152753.
- 24. J. Zhang, Q. Li, Y. Zeng, Z. Tang, D. Sun, D. Huang, Z. Peng, Y. Tang and H. Wang, *Chemical Engineering Journal*, 2021, **426**, 131110.
- 25. K. Li, Z. Hu, J. Ma, S. Chen, D. Mu and J. Zhang, *Adv Mater*, 2019, **31**, e1902399.
- 26. L. Wu, W. Jiang, H. Zou, C. Ye, J. Zhang, G. Xu, X. Li, Z. Yue, F. Sun and L. Zhou, *Journal of Materials Chemistry A*, 2021, **9**, 20748-20757.
- 27. Q. Zhang, W.-L. Bai, C.-Y. Sun, X. Liu, K.-X. Wang and J.-S. Chen, *Chemical Engineer ing Journal*, 2021, **405**, e2001992.