Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Online Supporting Information for

Shifting and Breaking Scaling Relations at Transition Metal Telluride Edges for Selective Electrochemical CO₂ Reduction

Courtney Brea^{1,2}, Guoxiang Hu^{1,2,*}

¹Department of Chemistry and Biochemistry, Queens College, City University of New York, New York, NY 11367, USA

²The Graduate Center, City University of New York, New York, NY 10016, USA *Corresponding author. Email: <u>guoxiang.hu@qc.cuny.edu</u>

Fig. S1 Comparison of the formation energies for the edges under different chemical environments. (a) MoS₂, MoSe₂, and MoTe₂ in the Mo-rich condition, (b) MoS₂, MoSe₂, and MoTe₂ in the X-rich condition, (c) WS₂, WSe₂, and WTe₂ in the W-rich condition, and (d) WS₂, WSe₂, and WTe₂ in the X-rich condition.

Fig. S2 The CO and H binding energies at the eight edges for (a) MoS_2 , (b) $MoSe_2$, (c) $MoTe_2$, where the CO binding energies were computed by using the RPBE functional.

Fig. S3 The H binding energy and *p*-band center for the ZZX edge of six chemical compositions.

Fig. S4 The initial, transition, and final states for the proton-electron transfer to *CO to form *CHO at the ZZTe-GB4-Te edge of MoTe₂. Mo, cyan; Te, brown; C, grey; O, red; H, white.

Table S1 The zero-point energy (ZPE) and entropy (TS) of reaction intermediates and free molecules for CO_2 reduction and HER at the ZZTe-GB4-Te edge.

	ZPE (eV)	-TS (eV)
CO ₂	0.31	-0.66
СООН*	0.63	-0.22
H_2	0.28	-0.40
H ₂ O	0.57	-0.67
CO*	0.21	-0.07
СНО*	0.47	-0.18
CH ₂ O	0.71	-0.68
CH ₂ OH*	1.11	-0.19
СНзОН	1.37	-0.81
CH ₂ *	0.68	-0.05
CH ₃ *	0.98	-0.11
CH4	1.20	-0.58
H*	0.23	-0.01