Supporting Information

Mitigation of RuO₆ Octahedron Distortion by Enhanced A-site

Electronegativity in Pyrochlore for Acidic Water Oxidation

Jiabiao Yan^{a, +}, Jing Zhu^{c, +}, Dawei Chen^{a, *}, Shuai Liu^d, Xu Zhang^a, Shoushan Yu^{a, *}, Zhenhua Zeng^{b, *}, Luhua Jiang^{a, *}, Fanglin Du^a

a. College of Material Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao, 266042, China. E-mail: D. Chen (daweichen@qust.edu.cn), L. Jiang (luhuajiang@qust.edu.cn), S. Yu (shoushanyu@qust.edu.cn)

b. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA. E-mail: Z. Zeng (zeng46@purdue.edu)

c. Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China.

d. School of Mechatronics and Energy Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, China.

Electrochemical Measurements.

In order to calculate the geometric current density (j_{geo}) , the current was normalized by the geometric area of GCE according to the Equation 1:

$$_{j_{\text{geo}}} = \frac{\rlap{l} \times 1000}{S} \quad \text{(mA/cm2)} \quad (1)$$

where i (A) is the current compensated by 95% iR-drop, and S is the geometric area of GCE (0.19625 cm²).

In order to calculate the ruthenium mass activity (j_{Ru}) , the current was normalized by the mass of ruthenium according to the Equation 2:

$$j_{\text{Ru}} = \frac{\overset{l}{u} \times 1000}{S \times m_{loading} \times W_{Ru}} \quad (A/g_{\text{Ru}}) \quad (2)$$

where i (A) is the current compensated by 95% iR-drop, S is the geometric area of GCE (0.19625 cm²), W_{Ru} is weight percent of Ru(wt.%) in the catalyst, and m_{loading} is the loading of catalyst on GCE (0.2 mg cm⁻²).

ECSA was caculated by the cyclic voltammetry curves with different scanning rates (10, 20, 30, 40, and 50 mV s⁻¹, respectively). The non-Faradaic current measured was plotted as a function of scan rate to obtain the capacitances (Cdl). Then, the ECSA was caculated according to the Equation 3:

$$ECSA = \frac{C_{dll} \times S}{C_S} \quad (cm^2) \quad (3)$$

where C_{dl} is the capacitance for each samples, S is the geometric area of GCE (0.19625 cm²), the value of specific capacitance (Cs) is 0.035 mF/cm² in this work and Cdl/Cs is the roughness factor (RF).

Finally, the OER polarization curves was normalized by ECSA according to the Equation 4:

$$j_{ECSA} = \frac{\# \times 1000}{ECSA} \quad (mA/cm^2) \quad (4)$$

where i (A) is the current compensated by 95% iR-drop, and ECSA is the electrochemical active surface area (cm²) calculated according to the Equation (3).

Polarization curves normalized by BET area (j_{BET}) was obtained according to the Equation (5):

j

$$_{\text{BET}} = \frac{\tilde{t} \times 1000}{S \times BETarea \times m_{loading}} \quad (\text{mA/cm}^2) \quad (5)$$

where i (A) is the current compensated by 95% iR-drop, S is the geometric area of GCE (0.19625 cm²), BETarea is calculated by the Nitrogen absorption-desorption isotherms, and $m_{loading}$ is the loading of catalyst on GCE (0.2 mg cm⁻²).

In order to calculate the turnover frequencies (TOFs), we make the following settings. Firstly, assuming each ruthenium atoms in the catalysts formed one active center. The numbers of Ru atoms number in catalysts were calculated from the weight percent of Ru and the mass loading on the glass carbon electrode according to the equation (6):

$$N_{Ru=} \frac{m_{loading} \times S \times W_{Ru}}{M_{Ru} \times 1000} \times N_A \tag{6}$$

where m_{loading} is loading of catalyst (0.2 mg cm⁻²), S is the geometric area of GCE (0.19625 cm²), W_{Ru} is weight percent of Ru (wt.%) in the catalyst, M_{Ru} is the molar mass of Ru, and N_A is the Avogadro constant (6.02 × 10²³ mol⁻¹).

mol⁻¹). The number of total O₂ turnovers per second $\binom{N_{O_2}/s}{s}$ was calculated from the current density (j_{geo}) according to the Equation (7):

$$N_{0_2}/s = \frac{J_{geo} \times 5}{4e \times 1000}$$
 (s⁻¹) (7)

where j_{geo} (mA/cm²) is the current density mormalized by geometric area, S is the geometric area of GCE (0.19625 cm²), the number of 4 means 4 electrons transfer in OER, and e is the charge of electron (1.6 × 10⁻¹⁹ C).

Thus, the TOF value underestimated was calculated according to the equation (8), assuming the Faraday efficiency of the reation process is 100%.

$$\text{FOF } (O_2) = \frac{\frac{N_{O_2}/s}{N_{Ru}}}{\frac{N_{Ru}}{m_{loading} \times W_{Ru} \times 4F}} = \frac{j_{geo} \times M_{Ru}}{(s^{-1})}$$
(8)

where j_{geo} (mA/cm²) is the current density mormalized by geometric area, M_{Ru} is the molar mass of Ru, m_{loading} is the loading of catalyst on GCE (0.2 mg cm⁻²), W_{Ru} is weight percent of Ru (wt.%) in the catalyst, the number of 4 means 4 electrons transfer in OER, and F is Faraday constant (96485 C mol⁻¹).

Fig. S1. Transmission electron microscopy (TEM) images of YRO.

Fig. S2. Transmission electron microscopy with energy dispersive X-Ray spectroscopy (TEM-EDX) image of HRO.

Fig. S3. (a) the wide XPS spectra for HRO and YRO; (b) the XPS spectra of Ho 4d for HRO; (c) the XPS spectra of Y 3d for YRO.

Fig. S4. (a) X-ray diffraction (XRD) and (b) Scanning electron microscope (SEM) images of RuO₂.

Fig. S5. (a-c) CV scanning curves in 0.1 M HClO₄ electrolyte at different scan rates in non-Faradaic potential region for HRO, YRO and RuO₂, respectively; (d) Doublelayer capacitances of various catalysts.

Fig. S6. LSV polarization curves normalized by ECSA.

Fig. S7. Nitrogen absorption-desorption isotherms with the corresponding Brunauer-Emmett-Teller (BET) surface area for (a) HRO and (b) YRO; (c) the comparison of BET area for HRO and YRO; (d) polarization curves normalized by BET area.

Fig. S8. LSV polarization curves normalized by the mass of ruthenium in catalyst.

Fig. S9. LSV curves measured before and after 1000 CV cycles for HRO and YRO.

Fig. S10. Physical characterization for HRO after stability test. (a) XRD pattern; (b) SEM image; (c) TEM image; (d) HRTEM image.

Fig. S11. The OER mechanism on the HRO (111) and YRO (111) surfaces.

Fig. S12. The configurations of $Ho_2Ru_2O_7$ and $Y_2Ru_2O_7$, and the potential O vacancy positions in bulk structures for the formation energy of oxygen vacancy calculation.

	Electronegativity		Crystal Radius		Ionic Radius	
CN	HRO	YRO	HRO	YRO	HRO	YRO
6	1.433	1.340	1.041	1.040	0.901	0.900
7	1.403	1.314		1.100		0.960
8	1.377	1.291	1.155	1.159	1.015	1.019
9	1.353	1.272	1.216	1.215	1.072	1.175
10	1.334		1.260		1.120	

Table S1. Detailed comparison information of electronegativity and radii for trivalent

 Ho and Y cations.^{1,2}

 Table S2. ICP analysis for HRO.

Element	Sample amount	Conversion content	Wt.%
Но	9.5 mg	200526.3 mg/kg	20.05%
Ru	9.5 mg	111842.1 mg/kg	11.18%

Table 55. The faile of an peaks in O 18 spectrum							
		O_L	O _{sur}	O_V	O_{adv}	O_V / O_L	
HRO	area	69076.1	32539.1	35486.6	22944.3	0.51	
	ratio	43.2%	20.3%	22.2%	14.3%	0.51	
YRO	area	83072.5	36823.6	63298.4	21949.9		
	ratio	40.5%	17.9%	30.9%	10.7%	0.76	

Table S3. The ratio of all peaks in O 1s spectrum

 Table S4. ICP analysis of Ru³⁺ for HRO and YRO after stability test.

Sample	YRO	HRO
Concentration (mg/L)	1.05	0.91

	$E_{Ovcancay}/eV$	^a d-band center/eV	^b d-band center/eV	Band gap/eV	Magnetic moment/µ
YRO	1.58	-3.33	-4.37	0.648	1.682
HRO	4.18	-3.35	-4.42	0.645	1.684

Table S5. The O vacancy formation energy (Bader charge analysis)

*Bandgap and magnetic moments on Ru in bulk YRO and HRO. ^a Bulk, ^b Surface of YRO and HRO

Electrocatalyst	Supporter	Electrolyte	Overpotential (mV) @ 10 mA/cm ²	Tafel slope (mV/dec)	Stability	Reference
	GCE ¹		280	36.86	60 h @ 1 mA cm ⁻	This work
Ho ₂ Ru ₂ O ₇	TFP ²	0.1 M HClO ₄	215		2 10 h @ 10 mA cm ⁻²	
Y ₂ Ru ₂ O ₇	GCE	0.1 M HClO ₄	312	42.91	2 h @ 10 mA cm ⁻ 2	This work
$Y_{1.85}Zn_{0.15}Ru_2O_{7-\delta}$	AB ³	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	291	36.90	8 h @ 1 mA cm ⁻²	[3]
Nd ₂ Ru ₂ O ₇	GCE	0.1 M HClO ₄	310	58.48	8 h @ 1 A F ⁻¹	[4]
$\mathrm{Sm}_2\mathrm{Ru}_2\mathrm{O}_7$	GCE	0.1 M HClO ₄	345	58.98		[4]
$Pr_2Ir_2O_7$	GCE	0.1 M HClO ₄	295		3 h @ 10 mA cm ⁻²	[5]
$Y_{1.85}Ba_{0.15}Ru_2O_7$	GCE	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	287	40.80	5 h @ 10 mA cm ⁻²	[6]
$Y_2[Ru_{1.6}Y_{0.4}]O_{7-\delta}$	GCE	0.1 M HClO ₄	245	37.00		[7]
$Nd_2Ru_2O_7$	GCE	0.1 M HClO ₄	342	41.00	1 h @ 10 mA cm ⁻²	[8]
$Gd_2Ru_2O_7$	GCE	0.1 M HClO ₄	349	47.00	1 h @ 10 mA cm ⁻²	[8]
$Y_{1.7}Sr_{0.3}Ru_2O_7$	GCE	$0.5 \mathrm{~M~H_2SO_4}$	264	44.8	28 h @ 10 mA cm ⁻²	[9]
$Y_2Ru_2O_{7-\delta}$	GCE	0.1 M HClO ₄	300 mV @ 5 mA/cm ²	46	8 h @ 1 mA cm ⁻²	[10]

Table S6. Comp	oarison of OER	performance for	r pyrochlore	oxides in	acidic media.

 1 GCE = glass carbon electrode, 2 TFP = Ti fiber paper, 3 AB = Acetylene black.

Reference

- [1] K. Li, and D. Xue, J. Phys. Chem. A, 2006, 110, 11332-11337.
- [2] R. D. Shannon, Acta Cryst., 1976, A32, 751.
- [3] Q. Feng, Q. Wang, Z. Zhang, Y. Xiong, H. Li, Y. Yao, X.-Z. Yuan, M. C. Williams, M. Gu, H. Chen, H. Li, H. Wang, *Appl. Catal. B* 2019, 244, 494.
- [4] H. Liu, Z. Wang, M. Li, X. Zhao, X. Duan, S. Wang, G. Tan, Y. Kuang, X. Sun, Sci. China Mater. 2021, 64, 1653.
- [5] C. Shang, C. Cao, D. Yu, Y. Yan, Y. Lin, H. Li, T. Zheng, X. Yan, W. Yu, S. Zhou, J. Zeng, Adv. Mater. 2019, 31, e1805104.
- [6] Q. Feng, J. Zou, Y. Wang, Z. Zhao, M. C. Williams, H. Li, H. Wang, ACS Appl. Mater. Interfaces 2020, 12, 4520.
- [7] J. Kim, P. C. Shih, Y. Qin, Z. Al-Bardan, C. J. Sun, H. Yang, Angew. Chem. Int. Ed. Engl. 2018, 57, 13877.
- [8] M. A. Hubert, A. M. Patel, A. Gallo, Y. Liu, E. Valle, M. Ben-Naim, J. Sanchez, D. Sokaras, R. Sinclair, J. K. Nørskov, L. A. King, M. Bajdich, T. F. Jaramillo, ACS Catal. 2020, 10, 12182.
- [9] N. Zhang, C. Wang, J. Chen, C. Hu, J. Ma, X. Deng, B. Qiu, L. Cai, Y. Xiong, Y. Chai, ACS Nano 2021, 15, 8537.
- [10] J. Kim, P. C. Shih, K. C. Tsao, Y. T. Pan, X. Yin, C. J. Sun, H. Yang, J. Am. Chem. Soc. 2017, 139, 12076.