## Supporting Information

## Multifunctional sulfate-assistant synthesis of seaweed-like N,S-doped carbons as

## high-performance anodes for K-ion capacitors

Mengyue Liu,<sup>a</sup> Feng Zhu,<sup>b</sup> Weishan Cao,<sup>b</sup> Weihao Song,<sup>b</sup> Jiaxing Liu,<sup>b</sup> Xiangchao

Feng,<sup>a</sup> Zhen Li,<sup>a</sup> Yingze Cao,<sup>a</sup> Pengfei Wang,<sup>a,\*</sup> Jin Niu<sup>b,\*</sup>

<sup>a</sup> Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology,

Beijing 100094, P. R. China

<sup>b</sup> State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China

\*Corresponding author.

E-mail: wangpengfei@qxslab.cn; niujin@mail.buct.edu.cn

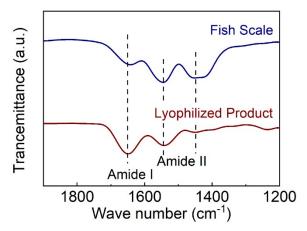



Fig. S1 FTIR patterns of fish scale and lyophilized product after  $K_2SO_4$  solution extraction.

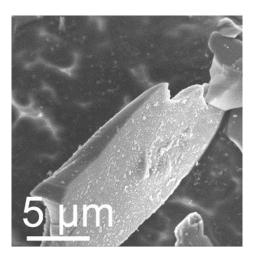



Fig. S2 SEM images of NC700.

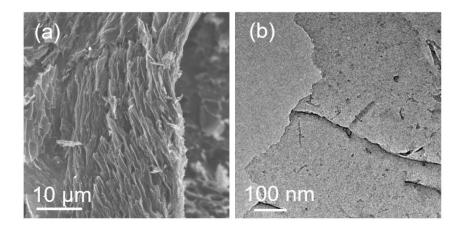



Fig. S3 (a) SEM image and (b) TEM image of NSPC600.

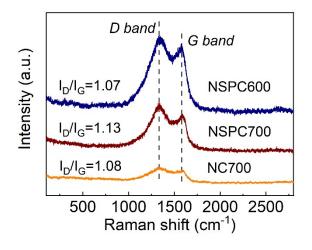



Fig. S4 Raman spectra of NSPC600, NSPC700, and NC700.

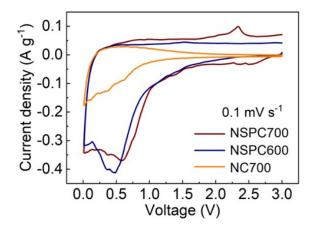



Fig. S5 CV curves at the scan rate of  $0.1 \text{ mV s}^{-1}$  of the NSPC700, NSPC600, and NC700 anodes in the first cycle.

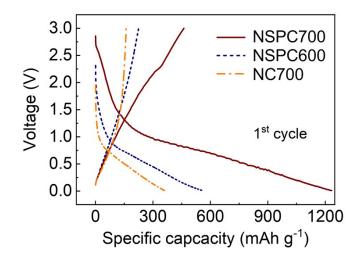



Fig. S6 GCD curves of the NSPC700, NSPC600, and NC700 anodes in the first cycle

at the current density of 0.05 A g<sup>-1</sup>.

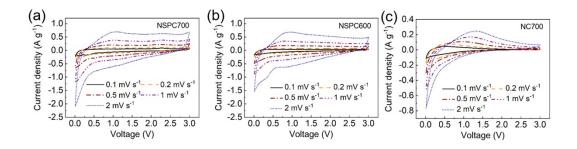
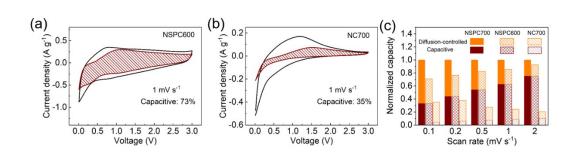



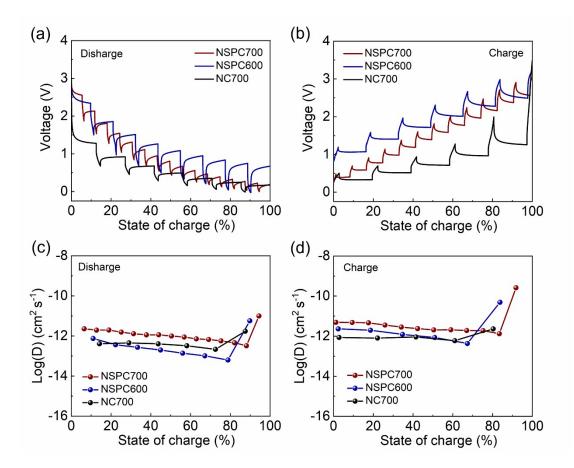

Fig. S7 CV curves at various scan rates of the (a) NSPC700, (b) NSPC600, and (c)

NC700 anodes.



**Fig. S8** Storage contributions from the capacitive process and diffusion-controlled process of the (a) NSPC600 and (b) NC700 anodes at 1 mV s<sup>-1</sup>. (c) Normalized capacities of the NSPC600, NSPC700, and NC700 anodes derived from capacitive process and diffusion-controlled process at various scan rates.

| Sample  | $R_e^{a}(\Omega)$ | $R_{f}^{b}(\Omega)$ | $R_{ct}^{\ c}(\Omega)$ | $\sigma^{d}$ |
|---------|-------------------|---------------------|------------------------|--------------|
| NSPC600 | 5.767             | 15.61               | 2586                   | 458.15       |
| NSPC700 | 5.738             | 14.14               | 1532                   | 362.49       |
| NC700   | 8.483             | 54.23               | 8641                   | 2123.34      |


**Table S1** Simulation results of the kinetic parameters for NSPC600, NSPC700, andNC700.

<sup>a</sup> The electrolyte resistance

<sup>b</sup> The resistance of the SEI

<sup>c</sup> The charge-transfer resistance

<sup>d</sup> Warburg coefficient



**Fig. S9** GITT potential plots of the anodes in the (a) potassiation and (b) depotassiation processes. The K<sup>+</sup> diffusion coefficients of the anodes in the (c) potassiation and (d) depotassiation processes.

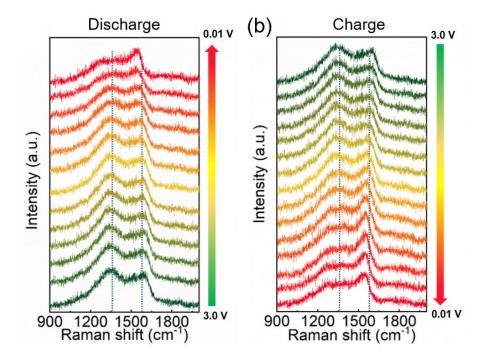



Fig. S10 In-situ Raman spectra of the NSPC700 anode during the discharge/charge processes.

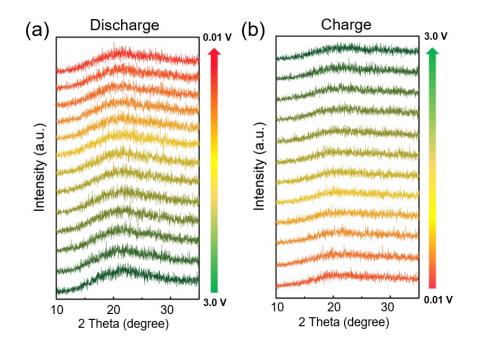



Fig. S11 In-situ XRD patterns of the NSPC700 anode during the discharge/charge processes.

|                    | N-Q   | N-5    | N-6    | N-Q-K  | N-5-K  | N-6-K  |
|--------------------|-------|--------|--------|--------|--------|--------|
| After<br>discharge | -     | -      | -      | 37.03% | 24.25% | 38.73% |
| After<br>charge    | 9.74% | 12.06% | 16.35% | 14.47% | 12.72% | 34.67% |

 Table S2 The near-surface N species of NSPC700 anode after discharge and charge processes.

 Table S3 The near-surface S species of NSPC700 anode after discharge and charge processes.

|                 | C-SO <sub>x</sub> -C | C-S-C  | $-K_2S_x$ |
|-----------------|----------------------|--------|-----------|
| After discharge | 14.19%               | 8.44%  | 77.37%    |
| After charge    | 15.65%               | 21.23% | 63.12%    |

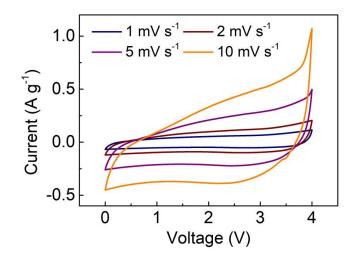
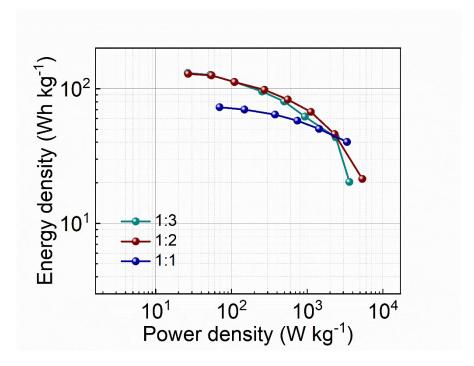




Fig. S12 CV curves of the NSPC700||HPC800 KIC at different scan rates.



**Fig. S13** Ragone plots of the NSPC700||HPC800 KICs with different mass ratio of anode to cathode materials.