Unraveling the relationships between chemical bonding and

thermoelectric properties: n-type ABO₃ perovskites

Yan Cao^a, Zhenyu Zhu^a, Xin Li^b, Jinyang Xi^{a,c}, David J. Singh^d, Lili Xi^{*a,c}, Jiong Yang^{*a,c}, and Wenqing Zhang^e

^a Materials Genome Institute, Shanghai University, Shanghai 200444, China.

^b State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.

^c Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China

^d Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.

^eDepartment of Materials Science and Engineering and Shenzhen Institute for Quantum Science & Technology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

Corresponding authors: Jiong Yang, Email: <u>jiongy@t.shu.edu.cn</u> Lili Xi, Email: <u>lilyxi@t.shu.edu.cn</u>

Table S1. The lattice parameter, band gaps (Eg), density of states (DOS) at conduction

band minima (CBM) +0.1 eV, deformation potential E_{def} (eV), and the coefficient of

	Composition	Lattice Parameter (Å)	E _g (eV)	DOS (a.u.)	E _{def} (eV)	R ²
1	SrHfO ₃	4.14	5.22	0.27	1.55	1.00
2	EuHfO ₃	4.09	5.33	0.24	2.96	1.00
3	CaZrO ₃	4.14	4.28	0.33	4.36	1.00
4	SrZrO ₃	4.18	4.29	0.38	43.83	0.23
5	EuZrO ₃	4.13	4.40	0.34	4.30	1.00
6	KTaO3	4.04	3.69	0.52	2.29	1.00
7	NaTaO ₃	3.99	4.00	0.55	2.06	0.94
8	RbTaO ₃	4.08	3.48	0.52	2.61	0.95

determination R^2 of the 46 compounds.

9	TlTaO ₃	4.09	1.50	0.68	0.85	0.25
10	AgNbO ₃	4.00	2.50	0.58	6.14	0.7
11	NaNbO ₃	3.98	2.73	0.56	2.30	0.99
12	KNbO ₃	4.03	2.50	0.56	-0.11	0
13	TlNbO3	4.09	0.42	0.67	62.49	0.32
14	SrTiO ₃	3.97	3.13	0.82	9.08	0.62
15	SnTiO ₃	3.97	1.82	1.04	1.99	1.00
16	PbTiO ₃	4.00	2.64	1.17	1.74	0.99
17	CaTiO ₃	3.92	3.26	0.73	2.50	1.00
18	EuTiO ₃	3.91	3.31	0.69	2.67	0.04
19	YbTiO ₃	3.88	3.43	0.72	2.65	1.00
20	PbHfO ₃	4.15	3.58	0.1	2.01	1.00
21	PbZrO ₃	4.19	3.54	0.1	3.29	0.93
22	BiAlO ₃	3.79	2.63	0.05	-1.07	0.93
23	BiGaO ₃	3.85	2.46	0.05	-0.92	0.92
24	BiInO ₃	4.15	1.05	0.08	-0.73	0.57
25	BiScO ₃	4.11	1.43	0.06	3.37	1.00
26	EuGeO ₃	3.77	2.90	0.02	-10.66	1.00
27	PbGeO ₃	3.90	0.84	0.02	-9.28	1.00
28	SrGeO ₃	3.86	1.92	0.02	-9.84	1.00
29	YbGeO ₃	3.74	3.39	0.02	-11.15	1.00
30	CaSiO ₃	3.61	4.74	0.02	-12.29	1.00
31	SnSiO ₃	3.70	1.09	0.02	-11.71	1.00
32	SrSiO ₃	3.69	3.68	0.02	-11.36	1.00

33	EuSiO ₃	3.61	4.69	0.02	-22.49	1.00
34	PbSiO ₃	3.75	1.83	0.02	-20.38	1.00
35	CaSnO ₃	3.99	4.32	0.03	-8.27	0.88
36	EuSnO ₃	3.98	4.57	0.02	-13.97	1.00
37	PbSnO ₃	4.06	3.64	0.03	-12.69	1.00
38	SrSnO ₃	4.04	3.80	0.02	-10.62	1.00
39	BaSnO ₃	4.13	0.94	0.01	-9.33	1.00
40	NdGaO ₃	3.83	4.06	0.09	3.32	1.00
41	PrGaO ₃	3.84	4.03	0.09	3.29	1.00
42	SmGaO ₃	3.80	4.20	0.09	3.34	1.00
43	DyAlO ₃	3.71	4.61	0.09	0.011	0.01
44	NdAlO ₃	3.77	4.13	0.08	3.31	1.00
45	PrAlO ₃	3.80	4.09	0.08	3.23	1.00
46	LaAlO ₃	3.83	3.12	0.07	2.91	1.00

Table S2. The Young's modulus (*G*), lattice thermal conductivity (κ_L), ZT_{max} , carrier concentrations *n*, electrical conductivity (σ), and Seebeck coefficients (*S*) of the 46 compounds at 700 K.

Composition	Young's	κ_L		n	σ	S
	modulus	(W/mK)	ZT_{max}	$(10^{20} \mathrm{cm}^{-3})$	(S/m)	(µV/K)
	G (GPa)					
SrHfO ₃	250.59	13.28	0.37	2.45	233428.91	-191.72
EuHfO ₃	256.83	13.43	0.36	2.30	233753.64	-191.84
CaZrO ₃	213.69	11.53	0.32	3.26	184653.90	-187.40
SrZrO ₃	226.04	13.34	0.38	3.39	249419.19	-191.77

EuZrO ₃	230.62	11.07	0.46	2.81	232863.31	-199.79
KTaO ₃	302.16	21.31	0.52	4.30	474028.37	-205.73
NaTaO ₃	281.84	15.21	0.72	3.89	416043.56	-222.03
RbTaO ₃	297.99	26.44	0.42	4.66	504262.48	-196.76
TlTaO ₃	267.20	11.03	0.78	3.87	306974.73	-227.34
AgNbO ₃	215.81	6.66	0.96	3.29	220389.72	-237.10
NaNbO ₃	262.49	16.53	0.70	3.89	432490.82	-222.24
KNbO ₃	281.84	23.04	0.52	4.35	487882.69	-209.40
TlNbO ₃	244.68	10.43	0.83	3.65	304976.31	-230.39
SrTiO ₃	270.33	18.58	0.40	7.54	334971.79	-196.83
SnTiO ₃	222.31	9.02	0.65	6.75	217452.55	-219.94
PbTiO ₃	233.33	9.34	0.69	6.93	232877.94	-221.82
CaTiO ₃	259.84	19.39	0.32	7.87	297336.90	-187.73
EuTiO ₃	289.89	20.86	0.39	7.12	381912.11	-194.07
YbTiO ₃	278.52	16.28	0.50	6.65	350063.88	-204.59
PbHfO ₃	223.87	7.92	0.51	0.77	176521.06	-205.83
PbZrO ₃	200.75	7.13	0.48	0.83	152049.09	-203.03
BiAlO ₃	290.30	14.44	0.36	0.59	253503.67	-190.72
BiGaO ₃	227.24	8.02	0.46	0.54	165844.00	-200.81
BiInO ₃	143.96	2.92	0.66	0.49	78634.59	-219.06
BiScO ₃	367.50	8.57	0.53	0.45	195848.10	-207.84
EuGeO ₃	322.84	23.86	0.01	0.47	17926.02	-134.08
PbGeO ₃	245.07	11.14	0.01	0.38	9730.26	-133.14
SrGeO ₃	277.07	23.50	0.01	0.39	12724.63	-133.26

YbGeO ₃	318.29	19.64	0.01	0.50	19689.00	-135.79
CaSiO ₃	365.32	35.55	0.01	0.67	16186.06	-136.68
SnSiO ₃	294.23	15.32	0.01	0.61	15562.07	-134.86
SrSiO ₃	346.23	30.90	0.01	0.58	20534.92	-136.00
EuSiO ₃	421.75	37.25	0.01	0.65	27906.13	-137.73
PbSiO ₃	291.81	13.26	0.01	0.57	15410.93	-134.50
CaSnO ₃	210.88	10.95	0.01	0.56	8603.92	-136.41
EuSnO ₃	234.69	11.16	0.01	0.54	11894.26	-138.11
PbSnO ₃	202.97	7.95	0.02	0.69	10608.51	-133.38
SrSnO ₃	217.99	12.82	0.01	0.50	10821.88	-137.12
BaSnO ₃	219.68	14.06	0.01	0.23	7528.25	-135.98
NdGaO ₃	263.43	12.89	0.17	1.41	126406.88	-167.56
PrGaO ₃	263.35	13.25	0.17	1.38	128851.64	-167.13
SmGaO ₃	261.75	12.33	0.17	1.46	122732.81	-168.79
DyAlO ₃	344.74	24.10	0.13	1.65	192951.90	-162.45
NdAlO ₃	337.76	25.89	0.12	1.49	186751.64	-159.42
PrAlO ₃	333.63	25.40	0.12	1.45	186283.27	-159.75
LaAlO ₃	317.62	23.30	0.13	1.21	184365.77	-160.28

Table S3. The band gaps in this work calculated with mBJ+U ($E_{g-mBJ+U}$), PBE+U ($E_{g-PBE+U}$), and experimental band gaps of cubic ABO₃ ($E_{g-exp.}$).

and experimental band gaps of easier in boy (Egexp.).						
Compound	$E_{g-mBJ+U}(eV)$	$E_{g-PBE+U}(eV)$	E _{g-exp.} (eV)			
KTaO ₃	3.69	2.33	3.64 ¹			
NaTaO ₃	4.00	2.51	~4.00 ²			
AgNbO ₃	2.50	1.82	2.78 ³			
SrTiO ₃	3.13	2.32	3.22 4			
PrAlO ₃	4.09	2.89	3.19 ⁵			

Fig. S1. The electronic structures, DOS, wave functions, and band-resolved COHPs for 46 compounds.

(eV) p-O d-Hf Energy (SrHfO ХМГ RX 2 4 6 8 1 DOS (a.u.) Energy (eV) Energy (eV) (eV) Energy SrHfO₃ (Sr-O) SrHfO₃ (Hf-O) SrHfO₃ (Sr-Hf) R Г XМ Г R Г R XM XM Energy (eV) 0.1500 0.1500 0.1500 0.000 nergy (eV) Energy (eV) SrHfO. (Sr onsite SrHfO, (Hf or SrHfO, (O onsit ding -2 ГХМ Г -2 ГХМ Г ГХМ RX RX RX Г 2. EuHfO₃ (eV)p-O d-H Energy (EuHfO, ХМГ R X ⁰ ² ⁴ ⁶ ⁸ DOS (a.u.) Energy (eV) so bonding bonding Energy (eV) Energy (EuHfO₃ (Eu-Hf) EuHfO₃ (Hf-O) EuHfO, (Eu-O) R RX ⁻²Г XM RX XM XM Г X I Γ Г (eV) (eV) Energy (eV) Energy (Energy (EuHfO₃ (Hf onsite) EuHfO₃ (O onsite) EuHfO, (Eu onsite) ХМ Г RX ГХМ Г RX ΓXM Г RX Г

1. SrHfO₃

3. CaZrO₃

4.SrZrO₃

5. EuZrO₃

6. KTaO₃

7. NaTaO₃

8. RbTaO₃

9. TlTaO₃

10. AgNbO₃

12. KNbO₃

13. TINbO₃

14. SrTiO₃

15. SnTiO₃

16. PbTiO₃

17. CaTiO₃

18. EuTiO₃

19. YbTiO₃

20. PbHfO₃

21. PbZrO₃

22. BiAlO₃

23. BiGaO₃

24. BiInO₃

26. EuGeO₃

27. PbGeO₃

28. SrGeO₃

29. YbGeO₃

30. CaSiO₃

31. SnSiO₃

-1

0 Energy (eV)

32. SrSiO₃

2

33. EuSiO₃

34. PbSiO₃

35. CaSnO₃

36. EuSnO₃

37. PbSnO₃

38. SrSnO₃

39. BaSnO₃

40. NdGaO3

41. PrGaO₃

42. SmGaO₃

43. DyAlO₃

44. NdAlO₃

45. PrAlO₃

46. LaAlO₃

Fig. S2 The Fermi surfaces of (a) SrTiO₃, (b) BiInO₃, (c) CaSnO₃ (d) LaAlO₃.

Fig. S3 The correlations between Seebeck coefficient (*S*) and carrier concentration (*n*) of type I compounds.

References:

- G. E. Jellison, I. Paulauskas, L. A. Boatner and D. J. Singh, Phys. Rev. B, 2006, 74, 155130
- 2. G. A. S. Alves, H. A. Centurion, J. R. Sambrano, M. M. Ferrer and R. V. Gonçalves,

ACS Applied Energy Materials, 2020, 4, 671-679.

- 3. O. A. Carrasco-Jaim, L. M. Torres-Martínez and E. Moctezuma, Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 167-176.
- 4. M. Cardona, Physical Review, 1965, 140, A651-A655.
- 5. M. K. Butt, M. Yaseen, J. Iqbal, A. S. Altowyan, A. Murtaza, M. Iqbal and A. Laref, Journal of Physics and Chemistry of Solids, 2021, 154, 110084.