Supporting Information

Modulation of coordination environment enhances electrocatalytic efficiency of Mo single atoms toward water splitting

Chih-Chieh Cheng,^a Yong-Xian Yeh,^a Yu-Chieh Ting,^a Shin-Hong Lin,^a Kotaro Sasaki,^b YongMan Choi,^c Shih-Yuan Lu^a**

Affiliations:

^aDepartment of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan. ^bChemistry Department, Brookhaven National Laboratory, Upton, NY 11973, USA. ^cCollege of Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan.

Email: ymchoi@nctu.edu.tw (Y. Choi); sylu@mx.nthu.edu.tw (S.-Y. Lu)

Computational methods

All spin-polarized periodic density functional theory (DFT) calculations were performed using the Vienna Ab initio Simulation Package (VASP)¹⁻² to systematically examine the HER activity of the three single-atom catalysts (SACs) of $Mo-O_2C_2$, Mo- $O_2N_1C_1$, and Mo- O_2N_2 . We used revised Perdew-Burke-Ernzerh (RPBE) functional³ within the generalized gradient approximation (GGA) for modeling the exchangecorrelation energy and the projector augmented plane wave (PAW) method⁴ for describing ionic cores. The tetrahedron method with Blöchl corrections of $\sigma = 0.05$ eV was employed, while 600 eV of the plane-wave cutoff energy was used. To prepare 2Dslab models for Mo-O₂C₂, Mo-O₂N₁C₁, and Mo-O₂N₂, a bulk graphite model (hexagonal, *P63/mmc*) was first prepared. To get accurate lattice constants of the bulk graphite (Figure S17),⁵ Brillouin-zone integrations were performed on a grid of (12 \times 12 \times 8) **k**-point meshes with the Monkhorst–Pack method.⁶ (3 \times 3 \times 1) **k**-point meshes were used for 2D-slab model calculations. Our computational method using the DFT-D3 method in the RPBE level (RPBE/DFT-D3) reproduced the experimental value of the graphite interlayer spacing⁵ at 4.2 K (3.336 Å versus 3.3111 Å, respectively). In addition, we compared the reference value of hydrogen adsorption energy and its Gibbs free energy on $p(2 \times 2)$ four-layered Pt(111)⁷ in the RPBE level. As shown in Figure S17, the hexagonally networked graphite layers are combined by van der Waals forces with an interval of 3.3111 Å and a CC-bond length of 1.4273 Å. The calculated lattice parameters a = 2.4722 Å and $c = 6.6222$ Å are in line with the experimental values.^{5, 8} As its (0001) facet is the basal plane and principally exposed, ⁹ we first applied the threelayer (0001) surface for generating Mo-containing SAC models. Figure S17 and Figure S18, respectively, show the structures of bulk graphite and a periodically extended $6 \times$ 6 surface model (216 C atoms) with 15 Å of a vacuum space to separate the slabs. The bottom two layers were fixed to the bulk properties. Then, we generated fourcoordinated Mo centers by following the experimental results. For the three-layer model, only the top-most layer and the adsorbate (*i.e.*, hydrogen atoms) were allowed to fully relax, whereas its bottom two layers were fixed at the bulk properties. A onelayer graphene model was examined to save computational time as shown in Figure S18. We confirmed that the difference of hydrogen adsorption energies between oneand three-layer models $(\sim 0.3 \text{ eV})$ may be negligible. Then, the one-layer model was used to propose plausible surface configurations supporting the experimental findings via extensive calculations. To verify the computational approach, as summarized in Table S3, a (2×2) surface of Pt(111) (16 Pt atoms) was applied. Only the most stable three-fold fcc active site was used for obtaining hydrogen adsorption energies. Without applying the dispersion correction, it agrees with that in the literature.⁷ To accurately evaluate the HER activity of $Mo-O₂C₂$, $Mo-O₂N₁C₁$, and $Mo-O₂N₂$, the Gibbs free

energy change of hydrogen adsorption (ΔG_H) is used as a crucial descriptor and defined as the following expression.⁷

$$
\Delta G_H = \Delta E_H - T\Delta S_H + \Delta E_{ZPE} \tag{1}
$$

where ΔE_H is the adsorption energy of a hydrogen atom adsorbed at the Mo metal center of the SAC.

 $\Delta E_H = E(H-SAC) - E(SAC) - 1/2E(H_2)$ (2) where $E(H-SAC)$, $E(SAC)$, and $E(H₂)$ are the calculated energies of the SAC with an adsorbed hydrogen species, the clean SAC surface, and gas-phase H_2 , respectively. ΔS_H and ΔE_{ZPE} are the entropy difference and zero-point energy (ZPE) of adsorbed hydrogen and gas-phase hydrogen, respectively. T is the temperature at 298.15 K. As the vibrational entropy term of an adsorbed hydrogen atom is negligible (Table S3), the

entropy change is approximated by using $\Delta S_H \cong -\frac{1}{2} S_{H_2}^0$ at the standard conditions. ZPEs $\frac{1}{2}S_{H_2}^{0}$

$$
E_{ZPE} = \sum_{i=1}^{n} \frac{1}{2} h v_i
$$

are calculated by $i=1^2$, where v_i is the vibrational frequency. The Dmol³ v_i module¹⁰⁻¹¹ implemented in the Materials Studio package¹² was used to obtain the correction energy of the Gibbs free energy ($T\Delta S_H + \Delta E_{ZPE}$) using the optimized geometries from VASP calculations. The double numerical polarization (DNP) 4.4 basis, the all-electron method, and the RPBE exchange-correlation functional were applied for the single-point energy calculations. As summarized in Table S3, the correction energy is close to the value reported in the literature and is a constant. The minor discrepancy results from different computational methods. Therefore, to be consistent with the literature,⁷ we used the literature value of 0.24 eV, and the overall correction is taken as $\Delta G_H = \Delta E_H + 0.24 \text{ eV}$. The charge density difference was calculated according to the following expression

$$
\Delta \rho = \rho_{H-SAC} - (\rho_{SAC} + \rho_H)
$$

where ρ_{H-SAC} , ρ_{SAC} , and ρ_H are the charge density of Mo SAC with adsorbed H, SAC, and H, respectively. The charge density differences were rendered using VESTA.¹³

Figure S1. ATR-FTIR spectra of phen and Mo-phen_{b650}.

Figure S2. Powder XRD patterns of phen and Mo-phen_{b650}.

Figure S3. Powder XRD patterns of CB-Mo_{a650}, Mo-phen_{a650}, and Mo-O₂C₂.

Figure S4. SEM images of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$, and (c) $Mo-O_2N_2$.

Figure S5. High magnification HAADF-STEM images of (a) Mo-O₂C₂, (b) Mo- $O_2N_1C_1$, and (c) Mo- O_2N_2 .

 2 nm

Figure S6. HR-TEM images and corresponding SAED patterns (inset) of (a) Mo- $O_2N_1C_1$ and (b) Mo- O_2N_2 . EDS elemental mapping of (c) Mo- $O_2N_1C_1$ and (d) Mo-O2N² (scale bar: 100 nm).

catalyst	path	$C.N^a$	$R(A)^b$	$\triangle E_0$ $(eV)^c$	$\sigma^2(\AA^2)^d$	\boldsymbol{R} factor ^e	
$Mo-O2C2$	$Mo-O$	2.26 ± 0.09	1.72	-7.24	0.0020	0.004	
	$Mo-C$	2.08 ± 0.29	1.98		0.0071		
$Mo-O2N1C1$	$Mo-O$	2.08 ± 0.08	1.70		0.0020	0.002	
	$Mo-C$	0.82 ± 0.13	2.02	-6.70	0.0090		
	$Mo-N$	0.79 ± 0.20	2.18		0.0030		
$Mo-O2N2$	$Mo-O$	2.06 ± 0.07	1.74		0.0021		
	$Mo-N$	1.79 ± 0.24	2.14	-8.50	0.0080	0.002	

Table S1. Optimal fitting results for EXAFS data of $Mo-O_2C_2$, $Mo-O_2N_1C_1$, and $Mo-O₂N₂$.

^aC.N., coordination number; ^bR, distance between absorber and backscatter atoms; $c\Delta E_0$, inner potential correction; ^d*σ* 2 , Debye-Waller factor, thermal and structural disorders; ^e*R* factor, an indicator of fitting accuracy. S_0^2 was set to 0.95. Fitting ranges were all set to $1.0 \le R \le 2.0$ Å.

Figure S7. First-shell fitting of *k* 3 -weighted EXAFS in *R* space and inversed FT-EXAFS fitting paths in k space. (a) and (b) Mo-O₂C₂, (c) and (d) Mo-O₂N₁C₁ (e) and (f) Mo-O₂N₂. Fitting ranges were all set to $1.0 < R < 2.0$ Å.

Figure S8. FTIR spectrum of CB.

sample		N/C molar ratio in	
	precursor	precursor	
$Mo-O2C2$	$CB(150 \text{ mg})$,	0.08 (100% from phen,	
	phen (216 mg)	0% form DCD)	
	$CB(150 \text{ mg})$,	0.25	
$Mo-O2N1C1$	phen (216 mg) ,	$(32\%$ from phen, 68%	
	DCD(100 mg)	from DCD)	
	CB (150 mg),	0.39 (18% from phen, 82% from DCD)	
$Mo-O2N2$	phen (216 mg) ,		
	DCD(200 mg)		

Table S2. Summary of precursors and N/C molar ratios for fabrication of Mo SACs.

Figure S9. HR-XPS spectra of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$, and (c) $Mo-O_2N_2$ with fitted Mo $3d_{5/2}$ and Mo $3d_{3/2}$ curves plotted in red, and accumulation of fitted peaks plotted in black dashes.

Figure S10. Overlaid HR-XPS spectra of $Mo-O_2C_2$, $Mo-O_2N_1C_1$, and $Mo-O_2N_2$. (a) N 1s and (b) O 1s.

Figure S11. (a) LSV curves and (b) Tafel plots of NIF, CB-phen_{a650}, CB-phen- $DCD100_{a650}$, and CB-phen-DCD200 $_{a650}$ in 1.0 M KOH. CB-phen_{a650}, CB-phen-DCD100_{a650}, and CB-phen-DCD200_{a650} are control samples, prepared without presence of Mo precursor, corresponding to Mo-O₂C₂, Mo-O₂N₁C₁, and Mo-O₂N₂, respectively.

Figure S12. (a) LSV curves and (b) Tafel curves of $Mo-O₂C₂$ and rCB-Mo-phen_{a650} in 1.0 M KOH.

catalyst	$R_{ct}(\Omega)$		
Pt/C	0.70		
$Mo-O2C2$	1.32		
$Mo-O2N1C1$	2.07		
$Mo-O2N2$	2.72		

Table S3. Summary of R_{ct} of sample electrodes determined at -0.17 V (vs. RHE) in 1.0 M KOH.

Figure S13. Electrochemical characterizations of $Mo-O₂C₂$, $Mo-O₂N₁C₁$, and Mo- O_2N_2 in 0.5 M H_2SO_4 . (a) LSV curves and (b) Tafel plots.

Figure S14. Mass loading normalized LSV curves of $Mo-O_2C_2$, $Mo-O_2N_1C_1$, and $Mo-O₂N₂$ in (a) 1.0 M KOH and (b) 0.5 M H₂SO₄. Inset shows LSV curves in low current density region.

Figure S15. CVs of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$, and (c) $Mo-O_2N_2$ recorded at increasing scan rates from 10 to 150 mV s⁻¹ for estimating of C_{dl} in 1.0 M KOH.

Figure S16. Stability test of (a) $Mo-O₂N₁C₁$ and (b) $Mo-O₂N₂$ at initial current density of 100 mA cm⁻² in 1.0 M KOH for 50 h. Inset shows LSV curves before and after stability test.

Figure S17. Mo 3d HR-XPS spectra of Mo-O₂C₂ before and after stability test in 1.0 M KOH.

Figure S18. (a) SEM image and (b) high magnification HAADF-STEM image of $Mo-O₂C₂$ after stability test in 1.0 M KOH. Isolated Mo atoms were marked with red dashed circles.

Figure S19. Stability test of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$ and (c) $Mo-O_2N_2$ at the initial current density of -100 mA cm⁻² in 0.5 M H_2SO_4 for 50 h.

Figure S20. Faradaic efficiency of (a) $Mo-O₂C₂$, (b) $Mo-O₂N₁C₁$, and (c) $Mo-O₂N₂$ determined at 100 mA cm-2 for 60 minutes in 1.0 M KOH.

Figure S21. (a) Top and (b) side views of bulk graphite (hexagonal, *P63/mmc*) optimized at RPBE-DFT/D3, resulting in graphite interlayer spacing of 3.3111 Å and CC-bond length of 1.4273 Å. Calculated lattice parameters are $a = 2.4722$ Å and $c =$ 6.6222 Å.

Figure S22. Top and side views of three-layered SA Mo-centered surface models: (a) without and (b) with graphitic N, and (c) one-layer graphene model.

Figure S23. Top and side views of three SA models of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$, and (c) $Mo-O₂N₂$.

Figure S24. Side views of hydrogen adsorption (ΔE_H) on three SA models of (a) Mo- O_2C_2 , (b) Mo- $O_2N_1C_1$, and (c) Mo- O_2N_2 .

Figure S25. Projected density of states (PDOSs) of orbitals of Mo d and H 1s of hydrogen adsorption on three SA models of (a) $Mo-O_2C_2$, (b) $Mo-O_2N_1C_1$, and (c) Mo- O_2N_2 . Fermi energy level (E_F) is set to zero.

Table S4. (a) Compilation of electronic and thermodynamic properties for H_2 . (b) Calculated hydrogen adsorption properties on different surfaces.

(a)	ZPE (eV)	S (kcal/mol K)	S (eV) at 298.15 K	Remark
H,	0.27	0.032542		RPBE $\&$
			0.42	RPBE/DFT-
				D3(BJ)

(b)	ZPE (eV)	ΔE_H (eV)	Correction energy (eV)	$\Delta G_H (eV)^{[1]}$	Remark
Pt(111)	0.175	-0.32	0.25	$-0.07(-0.08)$	RPBE
$Mo-O2C2$	0.104	-0.64	0.18	$-0.46(-0.40)$	RPBE/DFT- D3(BJ)
$Mo-$ $O_2N_1C_1$	0.107	-0.76	0.18	$-0.58(-0.52)$	RPBE/DFT- D3(BJ)
$Mo-O2N2$	0.108	-0.81	0.18	$-0.63(-0.57)$	RPBE/DFT- D3(BJ)

[1] Values in parentheses are calculated according to $\Delta G_H = \Delta G_H + 0.24$ and were used to prepare Gibbs energy diagram in the main text.⁶

Figure S26. Illustration of calculated Gibbs free energies and overpotentials measured at 10 mA/cm² for Mo-O₂C₂, Mo-O₂N₁C₁, and Mo-O₂N₂ against d-band center of their Mo metal centers.

Catalyst	SA Concentration	Electroly te	Over- potential (mV)	Tafel slope (mV) dec^{-1})	Stability
$Mo-O2C2$ (this work)		1.0 M KOH	$61(\eta_{10}),$ $200(\eta_{500})$	33.8	i-t at -100 mA cm^2 for 50 h, 6% decayed
	Mo (3.14 wt)	0.5 _M H ₂ SO ₄	$63(\eta_{10}),$ $244(\eta_{500})$	34.4	i -t at -100 mA cm^2 for 50 h, 12% decayed
$Mo_1N_1C_2^{14}$	1.32 wt\%	0.1 _M KOH	$132(\eta_{10})$	90	negligible decayed after 1000 CV cycles
$Mo-$ SA@NCA ¹⁵	Mo (18.16) $wt\%$	1.0 M KOH	\sim 270	N/A	N/A
		0.5 _M H ₂ SO ₄	\sim 220	N/A	
Ni/GD^{16}	Ni (0.278) $wt\%$	0.5 _M H ₂ SO	$88(\eta_{10})$	45.8	i-t at -10 mA $cm-2$ for 116 h, negligible decayed
Fe/GD^{16}	Fe (0.680) $wt\%$	0.5 _M H ₂ SO ₄	$66(\eta_{10})$	37.8	i-t at -30 mA cm^{-2} for 60 h, \sim 20% decayed
Co ₁ /PCN ¹⁷	Co(0.3 wt%)	1.0 M KOH	$138(\eta_{10})$	52	i -t at -10 mA cm^2 for 24 h, negligible decayed
$Co-D_1T$ MoS_2^{18}	Co(3.54 wt%)	0.5 _M H ₂ SO	$42(\eta_{10})$	32	i-t at -34 mA cm^2 for 2.8 h,

Table S5. Comparison of HER efficiency and stability of recently reported state-ofthe-art SACs.

References

- 1. Kresse, G.; Hafner, J., *Phys. Rev. B* **1993,** 47, 558-561.
- 2. Kresse, G.; Furthmuller, J., *Phys. Rev. B* **1996,** 54, 11169-11186.
- 3. Perdew, J. P.; Burke, K.; Ernzerhof, M., *Phys. Rev. Lett.* **1996,** 77 (18), 3865-3868.
- 4. Kresse, G.; Joubert, D., *Phys. Rev. B* **1999,** 59 (3), 1758-1775.
- 5. Baskin, Y.; Meyer, L., *Phys. Rev.* **1955,** 100 (2), 544-544.
- 6. Monkhorst, H. J.; Pack, J. D., *Phys. Rev. B* **1976,** 13 (12), 5188-5192.
- 7. Nørskova, J. K.; Bligaarda, T.; Logadottira, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U., *J. Electrochem. Soc.* **2005,** 152 (3), J23-J26.
- 8. Furthmüller, J.; Hafner, J.; Kresse, G., *Phys. Rev. B* **1994,** 50 (21), 15606-15622.
- 9. He Man-Chao, Z. J., *Chin. Phys. B* **2013,** 22 (1), 16802-016802.
- 10. Delley, B., *J. Chem. Phys.* **1990,** 92 (1), 508-517.
- 11. Delley, B., *J. Chem. Phys.* **2000,** 113 (18), 7756-7764.
- 12. Dassault Systèmes BIOVIA. Materials Studio, version 18.1.0.2017, https://www.3dsbiovia.com/ **2018**.
- 13. Momma, K.; Izum, F., *J. Appl. Crystallogr.* **2011,** 44, 1272-1276.
- 14. Chen, W.; Pei, J.; He, C. T.; Wan, J.; Ren, H.; Zhu, Y.; Wang, Y.; Dong, J.; Tian, S.; Cheong, W. C., *Angew. Chem. Int. Ed.* **2017,** 56 (50), 16086-16090.
- 15. Cheng, Y.; Guo, H.; Li, X.; Wu, X.; Xu, X.; Zheng, L.; Song, R., *Chem. Eng. J.* **2021,** 410, 128359.
- 16. Xue, Y.; Huang, B.; Yi, Y.; Guo, Y.; Zuo, Z.; Li, Y.; Jia, Z.; Liu, H.; Li, Y., *Nature communications* **2018,** 9 (1), 1-10.
- 17. Cao, L.; Luo, Q.; Liu, W.; Lin, Y.; Liu, X.; Cao, Y.; Zhang, W.; Wu, Y.; Yang, J.; Yao, T., *Nature Catalysis* **2019,** 2 (2), 134-141.
- 18. Qi, K.; Cui, X.; Gu, L.; Yu, S.; Fan, X.; Luo, M.; Xu, S.; Li, N.; Zheng, L.; Zhang, Q., *Nature communications* **2019,** 10 (1), 1-9.
- 19. Zhang, H.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W., *Advanced Functional Materials* **2018,** 28 (51), 1807086.
- 20. Chen, W.; Pei, J.; He, C. T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W. C.; Mao, J., *Advanced Materials* **2018,** 30 (30), 1800396.
- 21. Fang, S.; Zhu, X.; Liu, X.; Gu, J.; Liu, W.; Wang, D.; Zhang, W.; Lin, Y.; Lu, J.; Wei, S., *Nature communications* **2020,** 11 (1), 1-8.
- 22. He, Q.; Tian, D.; Jiang, H.; Cao, D.; Wei, S.; Liu, D.; Song, P.; Lin, Y.; Song, L., *Advanced Materials* **2020,** 32 (11), 1906972.
- 23. Zhu, J.; Cai, L.; Yin, X.; Wang, Z.; Zhang, L.; Ma, H.; Ke, Y.; Du, Y.; Xi, S.; Wee, A. T., *ACS nano* **2020,** 14 (5), 5600-5608.
- 24. Yu, J.; Wang, A.; Yu, W.; Liu, X.; Li, X.; Liu, H.; Hu, Y.; Wu, Y.; Zhou, W., *Applied Catalysis B: Environmental* **2020,** 277, 119236.
- 25. Hossain, M. D.; Liu, Z.; Zhuang, M.; Yan, X.; Xu, G. L.; Gadre, C. A.; Tyagi, A.; Abidi, I. H.; Sun, C. J.; Wong, H., *Advanced Energy Materials* **2019,** 9 (10), 1803689.
- 26. Yi, J.-D.; Xu, R.; Chai, G.-L.; Zhang, T.; Zang, K.; Nan, B.; Lin, H.; Liang, Y.-L.; Lv, J.; Luo, J., *Journal of Materials Chemistry A* **2019,** 7 (3), 1252-1259.
- 27. Liang, H.-W.; Brüller, S.; Dong, R.; Zhang, J.; Feng, X.; Müllen, K., *Nature communications* **2015,** 6 (1), 1-8.
- 28. Zhang, X.; Liu, W.-X.; Zhou, Y.-W.; Meng, Z.-D.; Luo, L.; Liu, S.-Q., *Journal of Electroanalytical Chemistry* **2021,** 894, 115359.