Supporting Information

Multi-functional modification of nickel-rich lithium cathode materials using Na₂PO₃F

Fig.S1 Components of NCM sample. ICP-OES of samples before cycle and 1, 2, 3, 4 and 5 corresponding to NCM-0, NCM-0.05, NCM-0.33, NCM-1 and NCM-3, respectively.

ARTICLE

Fig.S2 Morphology characterizations of NCM-0. SEM image of NCM-0 in different magnification and corresponding to 500 ×, 1 k×, 2 k×, 10 k×, 50 k×, 100 k×, respectively.

Fig.S3 Morphology characterizations of NCM-0.05. SEM image of NCM-0.05 in different magnification and corresponding to $500 \times$, 1 k×, 2 k×, 10 k×, 50 k×, 100 k×, respectively.

ARTICLE

Fig.S4 Morphology characterizations of NCM-0.33. SEM image of NCM-0.33 in different magnification and corresponding to 500 ×, 1 k×, 2 k×, 10 k×, 50 k×, 100 k×, respectively.

J. Name., 2022, 00, 1-3 | 5

Fig.S5 Morphology characterizations of NCM-1. SEM image of NCM-1 in different magnification and corresponding to 500 ×, 1 k×, 2 k×, 10 k×, 50 k×, 100 k×, respectively.

ARTICLE

Fig.S6 Morphology characterizations of NCM-3. SEM image of NCM-3 in different magnification and corresponding to 500 ×, 1 k×, 2 k×, 10 k×, 50 k×, 100 k×, respectively.

Fig.S7 Morphology characterizations of NCM-1. EDS mapping of NCM-1 and the Co, Ni, Mn and O elements were evenly distributed.

Fig.S8 Electrochemical Performance characterizations. Charge/discharge curves of GITT at initial cycle for (A) NCM-0 and (B) NCM-1 in the range of 2.8-4.4 V (vs. Li⁺/Li) at 25 $^{\circ}$ C. GITT measurements were conducted in a titration step at 0.08 C of 30 min and a relaxation step of 3 h.

The D_{Li} can be calculated by the Fick's second law through Equation (1):¹

$$D_{Li^{+}} = \frac{4}{\pi\tau} \left(\frac{m_{B}V_{M}}{M_{B}S}\right)^{2} \left(\frac{\Delta E_{s}}{\Delta E_{t}}\right)^{2}$$
(1)

Where the τ is the relaxation time ($\tau = 1800$ s), m_B is the weight of the active material of electrode material, V_M is the molar volume of electrode material, M_B is the molar mass of the active material of electrode material ($M_B = 97.5$ g mol⁻¹), S is the contact area of electrode material with electrolyte (S = 1.131 cm²), ΔE_s is the voltage change caused by the pulse, and ΔE_t is the constant current charge/discharge voltage change.

This journal is © The Royal Society of Chemistry 2022

Fig.S9 CV curves of NCM-0 and NCM-1. The lines plot of cathodic/anodic peak current densities with the square root of scan rate.

Fig.S10 Surface composition characterization of NCM-0. (A) XPS full spectrum of NCM-0. (B) XPS spectra of Mn 2p, Co 2p, Ni 2p and C 1s for NCM-0.

Fig.S11 Surface composition characterization of NCM-1. (A) XPS full spectrum of NCM-1. (B) XPS spectra of P 2p and C 1s for NCM-1, also the deep profile curve of Na and F in the surface of NCM-1. The binding energy of 1070-1072 eV were corresponding to Na-O and Na-F, and the binding energy of 684-686 eV were corresponding to Li-F, TM-F and Na-F, with the binding energy of 132-135 eV were corresponding to Li-O-P.

Fig.S12 Surface composition of NCM-1 and NCM-1. (A) TGA test and (B) the content of the material decomposition during each pyrolysis process: (i) Adsorbed water should be highly unsTable Sat 150 $^{\circ}$ C and is expected to evaporate from the sample relatively quickly. (ii) Lithium bicarbonate and adsorbed carbonate species on positive electrode materials will decompose at 350 $^{\circ}$ C. (iii) LiOH is thermally degraded at 410-450 $^{\circ}$ C and Li₂CO₃ is evolved at 710-750 $^{\circ}$ C.²

Fig.S13 Structural characterization of five sample. XRD patterns of (A) NCM-0, (B) NCM-0.05, (C) NCM-0.33, (D) NCM-1 and (E) NCM-3 with refined XRD data analysis. (F) The lattice parameters of all samples.

Fig.S14 Structural evolution of NCM-0. In-situ XRD for NCM-0 cathode during the first charge-discharge cycle between 2.8-4.4 V (vs. Li⁺/Li) at 0.08 C. The peak corresponding to the * was the signal of the basal Al.

Fig.S15 Structural evolution of NCM-1. In-situ XRD for NCM-1 cathodes during the first charge/discharge cycle between 2.8-4.4 V (vs. Li⁺/Li) at 0.08 C. The peak corresponding to the * was the signal of the basal Al.

Fig.S16 Electrochemical Performance characterizations. Charge/discharge curves of GITT at 140th cycle for (A) NCM-0 and (B) NCM-1 in the range of 2.8-4.4 V (vs. Li⁺/Li) at 25 $^{\circ}$ C.

Fig.S17 Lines plot of cathodic/anodic peak current densities with the square root of scan rate of (A) NCM-0 and (B) NCM-1 at the 140th.

Fig.S18 Surface composition characterization. XPS spectra of Su 1s, C 1s, Li 1s, Mn 2p, Co 2p and Ni 2p of (A) NCM-0 and (B) NCM-1 at the 140th. (C) The deep profile curve of Na for NCM-1.

Fig.S19 Structural characterization of NCM-0. Cross-sectional SEM images of NCM-0 at the 280th and the content of the O, Mn, Co and Ni elements distribute along the bulk to the surface.

Fig.S20 Structural characterization of NCM-1. Cross-sectional SEM images of NCM-1 at the 280th and the content of the O, Mn, Co and Ni elements distribute along the bulk to the surface.

Fig.S21 Structural characterization. Cross-sectional SEM images of (A) NCM-0 and (B) NCM-1 at the 280th and the corresponding the morphology of the particle surface (samples were prepared through a focused ion beam).

Fig.S22 The change of cell volume V of NCM-0 and NCM-1 cathodes during the first charge between 2.8-4.4 V (vs. Li⁺/Li) at 25 $^{\circ}$ C.

Journal Name

Fig.S23 Structural characterization. TEM images of NCM-0 at the 140th with the magnification of the A, B,

C and D region and the corresponding FFT pattern (inset).

Supporting Tables

Table S1 Comparison of cycle number and capacity retention for reported modification of layer oxide cathode materials³⁻⁸ and this work.

	C-Rate	Voltage	Consistentian (0/)		Deference	
	(C)	(V)	Capacity retention (%)	Electrolyte	Reference	
			100.0 (at 50 cycles)			
			99.3 (at 100 cycles)	0.8 M LiPF ₆		
NCM811-Na ₂ PO ₃ F	1	4.4	94.4 (at 200 cycles)	0.4 M LIDFOB	This work	
			90.0 (at 300 cycles)	EC/EMC/FEC		
			83.3 (at 400 cycles)			
	1	4 5	80.4 (at 300 cycles)	1 M LiPF ₆	[2]	
	T	4.5	87.0 (at 200 cycles)	EC/DEC/DMC	[3]	
	1	4.2	96.7 (at 200 avalas)	1 M LiPF ₆	[4]	
	T	4.3	80.7 (at 200 cycles)	EC/EMC/DMC	[4]	
NCM811-LaPO ₄	1	4.3	91.2 (at 100 cycles)	-	[5]	
				1 M LiPF ₆		
NCM811-F	2	4.3	94.3 (at 100 cycles)	EC/EMC/DMC	[6]	
				1 M LiPF ₆		
NCM532-Na	-	4.25	97.8 (at 50 cycles)	EC/DMC	[7]	
				1 M LiPF ₆	[0]	
LNM120206-F Na&F	1	4.8	82.0 (at 100 cycles)	EC/DMC	[8]	
		4.0		1 M LiPF ₆	[0]	
LNM120206-Na	1	4.8	91.0 (at 100 cycles)	EC/DMC	[8]	
	4	4.0	02.0 (at 100 surles)	1 M LiPF ₆	[0]	
LINIVIIZUZUO-INA&F	T	4.8	93.0 (at 100 cycles)	EC/DMC	ĮδJ	

This journal is © The Royal Society of Chemistry 2022

Journal Name

Number	R _e (Ω)	R _{sf} (Ω)	σ
NCM-0	36.04	112.80	6.77
NCM-1	23.87	59.81	35.93

Table S2 The R_e and R_{sf} of the NCM-0 and NCM-1 measured by EIS.

The EIS results is commonly divide into three regions: (i) a intercept in the high frequency region relates to the electrolyte resistance (R_e); (ii) a semicircle in the high frequency region represents to the the surface-film resistance (R_{sf}); (iii) a semicircle in the intermediate frequency region relates to the charge transfer impedance (R_{ct}) of the Li-ion/electron at the interface between the electrolyte and the positive electrode material; (iiii) a sloping line in the low frequency region corresponds to the Warburg impedance relates to the diffusion movement of Li-ions inside the positive electrode material.^{9, 10} Table S3 The oxidation and reduction peak current of the NCM-0 and NCN-1 with a scan rate of 0.1-0.5

Number	NCM-0 Oxidation	NCM-0 Reduction	NCM-1 Oxidation	NCM-1 Reduction
I _p at 0.1mVs ⁻¹	0.60	-0.37	0.90	-0.58
I _p at 0.2mVs ⁻¹	1.09	-0.69	1.70	-1.07
I _p at 0.3mVs ^{−1}	1.53	-0.96	2.40	-1.50
I _p at 0.4mVs ^{−1}	1.87	-1.20	2.96	-1.84
l _p at 0.5mVs ^{−1}	2.18	-1.41	3.46	-2.14
l _p /v ^{1/2}	128.91	-83.96	208.11	-127.17
D _{Li} +	6.92E-10	2.94E-10	1.80E-09	6.74E-10

mV s⁻¹, and corresponding lithium-ion diffusion coefficient.

CV observed the behavior of the D_{Li}^+ (cm² s⁻¹) during the different scan rates.⁹ According to the plot of CV scan rates $v^{1/2}$ (mV s⁻¹)^{1/2} versus the peak current I_p (mA), D_{Li}^+ of samples are estimated as below (2):¹¹

$$I_{p} = 2.69 \times 10^{5} \times n^{3/2} \times A \times D_{Li^{+}}{}^{1/2} \times \nu^{1/2} \times C_{0}$$
(2)

Where n is the number of electrons in the Li⁺ (n = 1), A is the electrode area ($A = 1.131 \text{ cm}^2$), and C_0 is the initial concentration of Li⁺ in the cathode ($C_0 = 0.018 \text{ mol cm}^{-3}$).

Journal Name

Table S4 The relative composition of Li and TM (Ni/Mn/Co) in the NCM-0 and NCM-1.

Number	Li	ТМ	Li/TM
NCM-0	10.650	10.392	1.025
NCM-1	10.581	10.482	1.009

Table S5 Crystallographic and refined XRD data of NCM-0, NCM-0.05, NCM-0.33, NCM-1 and NCM-3.

Number	NCM-0	NCM-0.05	NCM-0.33	NCM-1	NCM-3
<i>a</i> [Å]	2.873	2.873	2.874	2.874	2.878
<i>c</i> [Å]	14.184	14.201	14.212	14.215	14.227
c/a	4.937	4.946	4.945	4.946	4.944
V[ų]	101.386	101.534	101.659	101.692	102.014
I ₍₀₀₃₎ /(104)	1.246	1.256	1.258	1.291	1.209
Ni at Li site (%)	3.72	3.64	3.44	2.27	4.46
R _{wp} (%)	8.3	7.5	8.6	7	6.8

 Table S6 Refined XRD data for NCM-0.

Element	Site	х	У	Z	Occupancy
Li	(3 <i>a</i>)	0	0	0	0.963
Ni	(3 <i>a</i>)	0	0	0	0.037
Ni	(3 <i>b</i>)	0	0	0.5	0.763
Со	(3 <i>b</i>)	0	0	0.5	0.100
Mn	(3 <i>b</i>)	0	0	0.5	0.100
Li	(3 <i>b</i>)	0	0	0.5	0.037
0	(6 <i>c</i>)	0	0	0.242	2.000

Table S7 Refined XRD data for NCM-0.05 (Since the content of Na₂PO₃F was too small, the effect of Na

and F elements on the crystal structure of the NCM was ignored during the refined).

Element	Site	x	у	Z	Occupancy
Li	(3 <i>a</i>)	0	0	0	0.964
Ni	(3 <i>a</i>)	0	0	0	0.036
Na	(3 <i>a</i>)	0	0	0	<0.001
Ni	(3 <i>b</i>)	0	0	0.5	0.764
Со	(3 <i>b</i>)	0	0	0.5	0.100
Mn	(3 <i>b</i>)	0	0	0.5	0.100
Li	(3 <i>b</i>)	0	0	0.5	0.036
0	(6 <i>c</i>)	0	0	0.243	2.000
F	(6 <i>c</i>)	0	0	0.243	<0.001

Table S8 Refined XRD data for NCM-0.33.

Element

Li

 Site
 x
 y
 z
 Occupancy

 (3a)
 0
 0
 0.957

 (3a)
 0
 0
 0.034

 (3a)
 0
 0
 0.009

Ni	(3 <i>a</i>)	0	0	0	0.034	
Na	(3 <i>a</i>)	0	0	0	0.009	
Ni	(3 <i>b</i>)	0	0	0.5	0.766	
Со	(3 <i>b</i>)	0	0	0.5	0.100	
Mn	(3 <i>b</i>)	0	0	0.5	0.100	
Li	(3 <i>b</i>)	0	0	0.5	0.034	
0	(6 <i>c</i>)	0	0	0.242	1.996	
F	(6 <i>c</i>)	0	0	0.242	0.004	

Table S9 Refined XRD data for NCM-1.

Element	Site	x	У	Z	Occupancy
Li	(3 <i>a</i>)	0	0	0	0.964
Ni	(3 <i>a</i>)	0	0	0	0.023
Na	(3 <i>a</i>)	0	0	0	0.013
Ni	(3 <i>b</i>)	0	0	0.5	0.777
Со	(3 <i>b</i>)	0	0	0.5	0.100
Mn	(3 <i>b</i>)	0	0	0.5	0.100
Li	(3 <i>b</i>)	0	0	0.5	0.023
0	(6 <i>c</i>)	0	0	0.240	1.992
F	(6 <i>c</i>)	0	0	0.240	0.008

Table S10 Refined XRD data for NCM-3.

Element Site z Occupancy Х у Li (3a) 0 0 0 0.920 Ni (3*a*) 0 0 0 0.045 0 0 Na (3*a*) 0 0.035 Ni (3b) 0 0 0.5 0.755 0 0 0.5 Со (3b) 0.100 Mn 0 0 0.5 0.100 (3b) Li 0 0 0.5 0.045 (3b) 0 0 0 0.240 (6*c*) 1.980 F (6c) 0 0 0.240 0.020

Journal Name

Table S11 The oxidation and reduction peak current of the NCM-0 and NCN-1 with a scan rate of 0.1-0.5

Number	NCM-0 Oxidation	NCM-0 Reduction	NCM-1 Oxidation	NCM-1 Reduction
I _p at 0.1mVs ⁻¹	0.05	-0.04	0.35	-0.22
ا _p at 0.2mVs ⁻¹	0.07	-0.05	0.62	-0.39
l _p at 0.3mVs ^{−1}	0.08	-0.06	0.84	-0.55
l _p at 0.4mVs ^{−1}	0.09	-0.07	1.02	-0.68
l _p at 0.5mVs ^{−1}	0.10	-0.07	1.18	-0.79
p/V ^{1/2}	4.02	2.92	67.24	46.84
D _{Li} +	6.73E-13	3.55E-13	1.88E-10	9.14E-11

mV s⁻¹, and corresponding lithium-ion diffusion coefficient after 140th cycle.

References

- S. Cui, Y. Wei, T. Liu, W. Deng, Z. Hu, Y. Su, H. Li, M. Li, H. Guo, Y. Duan, W. Wang, M. Rao, J. Zheng,
 X. Wang and F. Pan, *Adv. Energy Mater.*, 2016, *6*, 1501309-1501318.
- 2 H. Liu, Y. Yang and J. Zhang, J. Power Sources, 2006, 162, 644-650.
- Y. Li, L. Cui, C. Tan, X. Fan, Q. Pan, Y. Chu, S. Hu, F. Zheng, H. Wang and Q. Li, *Chem. Eng. J.*, 2022,
 430, 132985-132996.
- 4 P. Yue, Z. Wang, H. Guo, X. Xiong and X. Li, *Electrochim. Acta*, 2013, 92, 1-8.
- 5 W. Zhang, L. Liang, F. Zhao, Y. Liu, L. Hou and C. Yuan, *Electrochim. Acta*, 2020, **340**, 135871-135881.
- H. Tong, P. Dong, J. Zhang, J. Zheng, W. Yu, K. Wei, B. Zhang, Z. Liu and D. Chu, J. Alloys Compd.,
 2018, 764, 44-50.
- 7 R. Zhao, Z. Yang, J. Liang, D. Lu, C. Liang, X. Guan, A. Gao and H. Chen, J. Alloys Compd., 2016, 689, 318-325.
- 8 D. Liu, X. Fan, Z. Li, T. Liu, M. Sun, C. Qian, M. Ling, Y. Liu and C. Liang, *Nano Energy*, 2019, **58**, 786-796.
- 9 K. Du, H. Xie, G. Hu, Z. Peng, Y. Cao and F. Yu, ACS Appl. Mater. Interfaces, 2016, 8, 17713-17720.
- J. Zhang, Y. Cao, X. Ou, J. Zhang, C. Wang, C. Peng, B. Zhang and Y. Tian, J. Power Sources, 2019, 436, 226722-226731.
- 11 W. Liu, X. Li, D. Xiong, Y. Hao, J. Li, H. Kou, B. Yan, D. Li, S. Lu, A. Koo, K. Adair and X. Sun, *Nano Energy*, 2018, **44**, 111-120.