Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Electronic Modulation and Surface Reconstruction of Cactus-Like CoB₂O₄@FeOOH

Heterojunction for Synergistically Triggering Oxygen Evolution Reaction

Xueli Yin, Run Cai, Xiaoping Dai^{*}, Fei Nie, Yonghao Gan, Ying Ye, Ziteng Ren, Yujie Liu, Baoqiang Wu, Yihua Cao, Xin Zhang

State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment,

China University of Petroleum, Beijing, 102249, China.

* Corresponding author.

Prof X. P. Dai: State Key Laboratory of Heavy Oil Processing

College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, PR China E-mail address: daixp@cup.edu.cn

Figure S1 SEM images of (a) NF and (b) Co(OH)F/NF.

Figure S2 SEM images of the $CoB_2O_4@FeOOH/NF$ with various electrosynthesis time ((a) 60 s, (b)

180 s and (c) 300 s).

Figure S3 (a) and (b) elemental line scanning images of $CoB_2O_4@FeOOH/NF$.

	8000-	- 00				
	6000			Element	At%	
nts	В			Со	11.66	
Cou	4000			Fe	11.72	
	2000-1-0	Co Fe Fe				
		5	10 Energy (keV)	15	20	

Figure S4 TEM-EDS spectrum of CoB₂O₄@FeOOH/NF.

Figure S5 The survey XPS spectra of CoB₂O₄ /NF, FeOOH/NF and CoB₂O₄@FeOOH/NF.

Figure S6 CV cures of CoB₂O₄ /NF, FeOOH/NF and CoB₂O₄@FeOOH/NF.

Figure S7 (a) LSV curves and (b) CV curves of Co(OH)F/NF and CoB₂O₄@FeOOH/NF.

Catalysts	Substrate	η ₁₀ (mV)	η ₁₀₀ (mV)	Stability	Ref
CoB ₂ O ₄ @FeOOH/NF	Ni Foam	205	260	100 h	This work
FeOOH/Cr-NiCo ₂ O ₄ /NF	Ni Foam	217	268	20 h	[1]
FeOOH(Se)/IF	Iron foam	287	364	15 h	[2]
CoP/FeOOH	-	290	-	20 h	[3]
NiV-LDH@FeOOH/NF	Ni Foam	-	297	20 h	[4]
Co@Co-Bi/Ti	Ti mesh	329	373	20000s	[5]
Co-Fe-Bi/NF	Ni Foam	307	-	40 h	[6]
CC@CoO@FeOOH-NWAs	Carbon Cloth	255	-	20 h	[7]
Co-B@Co-Bi	-	291	-	25 h	[8]
FeOOH@NiCo ₂ O ₄	-	203	259	10 h	[9]
FeOOH/Co/FeOOHHNTAs-NF	Ni Foam	239	305	50 h	[10]

Table S1 Comparison of OER activities for reported catalysts

Figure S9 Faradaic efficiency of the $CoB_2O_4@FeOOH/NF$ catalyst for O_2 evolution.

Figure S10 (a) SEM image of $CoB_2O_4@FeOOH/NF$ after durability test. (b) The survey XPS of $CoB_2O_4@FeOOH/NF$ after durability test. Comparison of XPS spectra of (c) Co 2p, (d) Fe 2p, (e) O 1s and (f) B 1s before and after OER durability test.

Figure S11 CV curves of CoB₂O₄ /NF, FeOOH/NF and CoB₂O₄@FeOOH/NF recorded from 0.8224 to 0.9224 V (vs. RHE) at different scan rates (40, 60, 80, 100, 120 mV s⁻¹).

Figure S12 OER polarization curves standardized by ECSA of CoB₂O₄/NF, FeOOH/NF and CoB₂O₄@FeOOH/NF.

Figure S13 Cyclic voltammograms of (a) CoB_2O_4/NF and (b) $CoB_2O_4@FeOOH/NF$ at various scan rates (c) Linear relationship of the peak current density for oxidation wave as a function of scan rate for CoB_2O_4/NF and $CoB_2O_4@FeOOH/NF$. (d) Plot of TOF for CoB_2O_4/NF and $CoB_2O_4@FeOOH/NF$

Figure S14 (a) Nyquist plots of $CoB_2O_4@FeOOH/NF$ with different deposition times (60, 180 and 300 s) at potential of 1.5 V (vs. RHE), (b) A simplified Randles circuit by fitting the plots.

Figure S15 In-situ UV-vis experiment. W is working electrode, ref. is reference electrode and c is counter electrode.

Fig. S16 LSV curves of $CoB_2O_4@FeOOH/NF$ in a KOH solution with different PH range.

Cataluata	Cell Voltages (V)		Ctobility (b)	Deferrerer	
Catalysts	η 50	η 100	– Stability (n)	Keterence	
CoB ₂ O ₄ @FeOOH/NF Pt/C/NF	1.537	1.576	125@300 mA cm ⁻²	This work	
NC/Ni ₃ Mo ₃ N/NF NiMoO ₄ ·xH ₂ O/NF	1.58	1.71	50 h@500 mA cm ⁻²	[11]	
NiFe(OH) _x @Ni ₃ S ₂ /MoS ₂ -CC	_	1.71	48 h@20 mA cm ⁻²	[12]	
Ni ₃ S ₂ /MoS ₂ -CC				[]	
NiFeCo LDH NiFeCo phosphide	1.44	1.58	70 h@50 mA cm ⁻²	[13]	
Co _{1-x} Fe _x -LDH Ni _{1-x} Fe _x -LDH	1.59	1.88	24 h@25 mA cm ⁻²	[14]	
FeOOH/Cr-NiCo ₂ O ₄ /NF	1.62	1.65	10 h@20 mA cm ⁻²	[1]	
FeOOH/Cr-NiCo ₂ O ₄ /NF			C		
Ni ₅ P4/NiP2/NiFe LDH/NF Ni ₅ P4/NiP2/NF	1.60	1.68	50 h@50 mA cm ⁻²	[15]	
NiFe LDH-NiSe/NF NiFe LDH-NiSe/NF	-	1.84	75 h@12 mA cm ⁻²	[16]	
NiFe(OH)x/FeS/IF MoNi4/MoO2/NF	-	1.68	70 h@300 mA cm ⁻²	[17]	
Ni@NCNTs/NF-L NiFe-L	1.52	2.1	10 h@100 mA cm ⁻²	[18]	
NiFe(OH) _x /FeS/IF MoNi ₄ /MoO ₂ /NF	1.50	1.68	70 h@300 mA cm ⁻²	[19]	
NiFe LDH-MoS _x /INF 20%PtC/INF	-	1.72	20 h@100 mA cm ⁻²	[20]	
Co5M01.0O NSS@NF C05M01.0O NSS@NF	-	1.90	30 h@10 mA cm ⁻²	[21]	
NiFe LDHs/NiCo ₂ O ₄ /NF NiFe LDHs/NiCo ₂ O ₄ /NF	1.81	1.95	24 h@15 mA cm ⁻²	[22]	
NiFe-HD/pre-NF CoP/P-NiO/NF	-	1.62	85 h at 100 mA cm ⁻²	[23]	

 Table S2 Comparison of reported electrocatalysts for overall water splitting

Reference

- 1 T. Liu, P. Diao, Nano Res., 2020, **13**, 3299-3309.
- 2 S. Niu, W. J. Jiang, Z. X. Wei, T. Tang, J. M. Ma, J. S. Hu, L. J. Wan, J. Am. Chem. Soc., 2019, **141**, 7005-7013
- 3 J. Cheng, B. Shen, Y. Song, J. Liu, Q. Ye, M. Mao, Y. Cheng, Chem. Eng. J., 2022, 428, 131130-131137
- 4 W. Bao, L. Xiao, J. Zhang, Z. Deng, C. Yang, T. Ai, X. Wei, Chem. Commun., 2020, 56, 9360-9363.
- 5 C. Xie, Y. Wang, D. Yan, L. Tao, S. Wang, Nanoscale, 2017, 9, 16059-16065.
- 6 U. P. Suryawanshi, M. P. Suryawanshi, U. V. Ghorpade, S. W. Shin, J. Kim, J. H. Kim, Appl. Surf. Sci., 2019, 495, 143462-143469.
- 7 Y. Wang, Y. Ni, B. Liu, S. Shang, S. Yang, M. Cao, C. Hu, Electrochim. Acta, 2017, 257, 356-363.
- 8 T. Tan, P. Han, H. Cong, G. Cheng, W. Luo, ACS Sustain. Chem. Eng., 2019, 7, 5620-5625.
- 9 X. Cao, Y. Sang, L. Wang, G. Ding, R. Yu, B. Geng, Nanoscale, 2020, 12, 19404-19412.
- 10 J. X. Feng, H. Xu, Y. T. Dong, S. H. Ye, Y. X. Tong, G. R. Li, Angew. Chem. Int. Ed., 2016, 55, 3694-3698.
- 11 Y. Chen, J. Yu, J. Jia, F. Liu, Y. Zhang, G. Xiong, R. Zhang, R. Yang, D. Sun, H. Liu, W. Zhou, Appl. Catal. B-Environ., 2020, **272**, 118956-118964.
- 12 X. H. Wang, Y. Ling, B. L. Li, X. L. Li, G. Chen, B. X. Tao, L. J. Li, N. B. Li, H. Q. Luo, J. Mater. Chem. A, 2019, **7**, 2895-2900.
- 13 J. Lee, H. Jung, Y. S. Park, N. Kwon, S. Woo, N. C. S. Selvam, G. S. Han, H. S. Jung, P. J. Yoo, S. M. Choi, J. W. Han, B. Lim, Appl. Catal. B-Environ., 2021, 294, 120246-120255.
- 14 G. Rajeshkhanna, T. I. Singh, N. H. Kim, J. H. Lee, ACS Appl. Mater. Interfaces., 2018, **10**, 42453-42468.
- 15 L. Yu, H. Q. Zhou, J. Y. Sun, I. K. Mishra, D. Luo, F. Yu, Y. Yu, S. Chen, F. Ren, J. Mater. Chem. A, 2018, 6, 13619–13623.
- 16 S. Dutta, A. Indra, F. Yi, T. Song, U. Paik, ACS Appl. Mater. Interfaces, 2017, 9, 33766-33775.
- 17 M. Li, L. M. Tao, X. Xiao, X. W. Lv, X. X. Jiang, M. K. Wang, Z. Q. Peng, S. Yan, ChemCatChem, 2018, **10**, 4119-4125.
- 18 H. F. Yuan, F. Liu, G. B. Xue, H. Liu, Y. J. Wang, Y. W. Zhao, X. Y. Liu, X. L. Zhang, L. L. Zhao, Z. Liu, H. Liu, W. J. Zhou, Appl. Catal. B- Environ., 2021, 283, 119647-119657.
- 19 S. Niu, W. J. Jiang, T. Tang, L. P. Yuan, H. Luo, J. S. Hu, Adv. Funct. Mater., 2019, 29, 1902180-1902189
- 20 H. Zhang, G. Shen, X. Liu, B. Ning, C. Shi, L. Pan, X. Zhang, Z.-F. Huang, J.-J. Zou, Chin. J. Catal., 2021, 42, 1732-1741.
- 21 Y. Zhang, Q. Shao, S. Long, X. Huang, Nano Energy, 2018, 45, 448-455.
- 22 Z. Wang, S. Zeng, W. Liu, X. Wang, Q. Li, Z. Zhao, F. Geng, ACS Appl. Mater. Interfaces, 2017,

9, 1488-1495.

23 B. Wu, Z. Yang, X. Dai, X. Yin, Y. Gan, F. Nie, Z. Ren, Y. Cao, Z. Li, X. Zhang, Dalton Trans., 2021, **50**, 12547-12554.