Supplementary Information

Catalyst Support for Direct-Ammonia Solid-Oxide Fuel Cell Anodes based on Lanthanum Titanium Oxynitride

Saurav Sorcar^{1#}, Hodaya Zinowitz^{1#}, Eswaravara Prasadarao Komarala¹, Nomi Moshe¹, Ira Agranovich¹, Brian A. Rosen^{1*}

¹Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv 6997801, Israel

[#]Authors with equal contribution *Corresponding author: <u>barosen@post.tau.ac.il</u>

Figure. S1 XRD result of LaTiO₂N and its corresponding zoomed in data from 2 Θ values 27° to 46°. (# LaTiNO₂ PDF: 04-014-5881), (+Ti₅O₉ PDF: 04-005-4465)

Figure. S2 XRD result of $LaTi_{0.99}O_2N$ and its corresponding zoomed in data from 2 Θ values 25° to 57°. (# LaTiNO₂ PDF: 04-014-5881), (V La₂Ti₂O₇ PDF: 00-015-0334), (+ Ti₅O₉ PDF: 04-005-4465)

Figure. S3 XRD result of $LaTi_{0.98}O_2N$ and its corresponding zoomed in data from 2 Θ values 26° to 57°. (# LaTiNO₂ PDF: 04-014-5881), (V La₂Ti₂O₇ PDF: 00-015-0334), (+ Ti₅O₉ PDF: 04-005-4465)

Figure. S4 XRD result of $LaTi_{0.97}O_2N$ and its corresponding zoomed in data from 2 Θ values 26° to 45°. (# LaTiNO₂ PDF: 04-014-5881), (V La₂Ti₂O₇ PDF: 00-015-0334), (+ Ti₅O₉ PDF: 04-005-4465)

Figure. S5 XRD result of $LaTi_{0.95}O_2N$ and its corresponding zoomed in data from 2 Θ values 24° to 34°. (# LaTiNO₂ PDF: 04-014-5881), (+ Ti₅O₉ PDF: 04-005-4465), (V La₂Ti₂O₇ PDF: 00-015-0334)

Figure. S6 XRD result of LaTi_{0.93}O₂N and its corresponding zoomed in data from 2Θ values 20° to 57°. (# LaTiNO₂ PDF: 04-014-5881), (T Ti₆O₁₁ PDF: 00-050-0788), (^ La₂Ti₂O₇ PDF: 04-006-7220), (ε La₂TiO₅ PDF: 04-011-9299), (p La_{1.6}Ti_{0.4}O₃ PDF: 04-001-6803)

Figure. S7 XRD result of $LaTi_{0.90}O_2N$ and its corresponding zoomed in data from 2 Θ values 23° to 45°. (# LaTiNO₂ PDF: 04-014-5881), (T Ti₆O₁₁ PDF: 00-050-0788), (ϵ La₂TiO₅ PDF: 04-011-9299), (Z La₂Ti₂O₇ PDF: 00-017-0451)

Figure S8. (a), (b), and (c) SAED results of the circled region (a1), (b1), and (c1), respectively, for the sample 5%Cu-LTON. The unlabeled peaks without a symmetrical point on the other side of the beam are expected to be contaminating phase (identified by XRD) out of zone axis.

Figure S9. SEM-EDS analysis of 5%Cu-LTON.

Figure S10. (a) SEM backscatter image of an agglomerated Cu-LTON support and EDS elemental mapping of Cu-LTON showing the distribution of (b) La, (c) Ti, (d) O, (e) N, and (f) Cu.

Figure S11. (a) Bright-field TEM image of 5%Cu-LTON and its corresponding, EDX-STEM mapping showing the distribution of (b) La, (c) Ti, (d) N, (e) O, (f) Cu, and (g) TEM-EDS image.

Figure S12. (a) SEM image of $Ni_{15}Fe_{21}/5\%$ Cu-LTON and its (b) EDS analysis.

Figure S13. Powder XRD patterns of $Ni_{Y}Fe_{Z}/5\%$ Cu-LTON samples. (# LaTiNO₂ 04-014-5881), (^V La₂Ti₂O₇ 00-028-0517), (* LaTiO₂N 00-048-1230), (% Fe₃NiN 00-009-0318), (\$ Fe₂Ni₂N 00-050-1350), (π Fe_{0.4}Ni_{0.6} 04-004-8867), (α Fe_{0.15}Ni_{0.85} 04-024-7186), (& Ni 04-010-6148), (δ La₅Ni₁₉ 04-017-4192).

Figure S14. HR- XPS results (a) N 1s, (b) Ni 2p of $Ni_{31}/5\%$ Cu-LTON treated under 5% H₂ and (c) Ti 2p, (d) O 1s, (e) La 3d, (f) N 1s, and (g) C 1s for the 5%Cu-LTON catalyst.

Figure S15. Single layer vs three layer I-V curves of $Ni_{15}Fe_{14}/5\%$ Cu-LTON anode SOFC.

Figure S16. XRD results of used DA-SOFC cell Ni_{15} : Fe_{21} / 5%Cu-LTON.

(* LaTiO₂N PDF: 00-048-1230), (β Ce_{1.5}Gd_{0.5}O_{3.75} PDF: 04-020-7979), (χ Y₄Zr₃O₁₂ PDF: 04-002-0211), (\vee La₂Ti₂O₇ PDF: 00-015-0334), (+ Ti₅O₉ PDF: 04-005-4465)

Figure S17. Partial pressure curves of NH₃ and NO_x gases of (a) $Ni_{15}Fe_{21}/5\%Cu$ -LTON cell and (b) $Ni_{19}Fe_{17}/5\%Cu$ -LTON cell are presented. The curves show the partial pressure of the gases as a function of time during 24 hours at 750°C temperature. The total pressure in the vacuum system was 6.3*10⁻⁶torr.

	La	Ti	0	Ν	Stoichiometry
Sample 1	17.32	17.88	53.8	10.99	$La_{1.00}Ti_{1.03}O_{3.10}N_{0.63}$
Sample 2	15.39	16.12	55.96	12.53	$La_{1.00}Ti_{1.04}O_{3.63}N_{0.81}$
Sample 3	18.8	17.14	52.71	11.34	La _{1.00} Ti _{0.91} O _{2.8} N _{0.60}
Sample 4	14.52	15.09	58.57	11.82	$La_{1.00}Ti_{1.03}O_4N_{0.81}$

Table S1. SEM-EDS elemental analysis results of $LaTi_{0.95}O_2N$.

	Cu	La	Ti	0	Ν	Stoichiometry
Sample 1	0.96	15.2	16.75	51.3	15.78	$Cu_{0.06}\text{-}La_{1.00}Ti_{1.10}O_{3.37}N_{1.03}$
Sample 2	0.9	16.43	16.82	53.01	12.84	$Cu_{0.05}\text{-}La_{1.00}Ti_{1.02}O_{3.22}N_{0.78}$
Sample 3	1.75	19.45	22.7	42.63	13.48	$Cu_{0.09}\text{-}La_{1.00}Ti_{1.16}O_{2.19}N_{0.69}$
Sample 4	0.86	15.71	16.38	56.61	10.44	Cu _{0.05} -La _{1.00} Ti _{1.04} O _{3.6} N _{0.66}

Table S2. SEM-EDX elemental analysis results of 5%Cu/LTON

	Cathode	Operating	YSZ Electrolyte	Peak Power		
Anode		Temperature	Thickness [µm]	Density		
		[°C]		[mWcm ⁻²]		
Ba-Ni-YSZ	LSCF	750	10	275 [1]		
NiO/YSZ	LSCF	750	10	195[2]		
NiO/YSZ	LSM-YSZ	800	15	202 [3]		
Ni-YSZ	LSF	700	4-6	325 [4]		
Ni-YSZ	LSM-YSZ	750	30	299 [5]		
Ni-YSZ	LSM-YSZ	700		38[6]		
Ni:Fe/Cu- LTON+GDC	LSCF-GDC	750	43	230		

 Table S3: Peak powder densities of ammonia-fueled SOFCs having YSZ electrolyte.

	Cu	La	Ti	0	N	Ni	Fe	Gd	Ce	C
Site 1	0.17	3.86	3.86	65.12	0.46	3.59	4.45	0.52	5.49	12.48
Site 2	0.13	2.85	2.86	66.39	0.56	2.87	4.52	0.33	4.11	15.39
Site 3	0.12	2.98	2.97	68.71	0.3	3.63	6.09	0.39	4.82	9.98
Site 4	0.31	3.05	3.14	55.57	1.19	4.07	6.97	0.8	11.18	13.73
Site 5	0.04	3.3	3.35	64.23	0.48	3.34	5.2	0.69	6.36	13
Site 6	0.08	3.1	2.96	64.58	0.53	3.45	4.89	0.72	7.12	12.55

Table S4. SEM-EDX elemental analysis results of used cell Ni_{15} :Fe₂₁/5%Cu-LTON.

References:

- Y. Wang, J. Yang, J. Wang, W. Guan, B. Chi, L. Jia, J. Chen, H. Muroyama, T. Matsui, K. Eguchi, Low–Temperature Ammonia Decomposition Catalysts for Direct Ammonia Solid Oxide Fuel Cells, J. Electrochem. Soc. 167 (2020) 064501. https://doi.org/10.1149/1945-7111/ab7b5b.
- [2] M. Zendrini, M. Testi, M. Trini, P. Daniele, J. Van Herle, L. Crema, Assessment of ammonia as energy carrier in the use with reversible solid oxide cells, Int. J. Hydrogen Energy. 46 (2021) 30112–30123. https://doi.org/10.1016/j.ijhydene.2021.06.139.
- [3] L. ZHANG, Y. CONG, W. YANG, L. LIN, A Direct Ammonia Tubular Solid Oxide Fuel Cell, Chinese J. Catal. 28 (2007) 749–751. https://doi.org/10.1016/S1872-2067(07)60062-X.
- [4] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells, ACS Appl. Mater. Interfaces. 7 (2015) 28701–28707. https://doi.org/10.1021/acsami.5b11122.
- [5] Q. Ma, J. Ma, S. Zhou, R. Yan, J. Gao, G. Meng, A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte, J. Power Sources. 164 (2007) 86–89. https://doi.org/10.1016/j.jpowsour.2006.09.093.
- [6] A. Fuerte, R.X. Valenzuela, M.J. Escudero, L. Daza, Ammonia as efficient fuel for SOFC, J. Power Sources. 192 (2009) 170–174. https://doi.org/10.1016/j.jpowsour.2008.11.037.