Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Trash to treasure: recycling discarded agarose gel for practical Na/K-ion batteries

Deping Li^{1, *, #}, Fengjun Ji^{1, #}, Tianqi Liu^{1, #}, Xiaoyu Zhao², Qing Sun³, Yunzhuo Liu¹, Yiwei Wang¹, Jiaheng Zhang¹, Lijie Ci^{1, 3, *}

¹State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

²CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

³Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, China

Figure S1 SEM images of (a-b) AGC and (c-d) AGC-N.

Figure S2 Galvanostatic charge-discharge profiles in SIBs (a) AGC, (c) AGC-N, (e) AGC-NS. Galvanostatic charge-discharge profiles in PIBs (b) AGC, (d) AGC-N, (f) AGC-NS.

Figure S3 Cyclic voltammetry profiles of (a) AGC and (b) AGC-N at 0.1 mV s⁻¹, Cyclic voltammetry profiles of (c) AGC and (d) AGC-N at various scan rates from 0.1 mV s⁻¹ to 2.0 mV s⁻¹ in SIBs.

Figure S4 Cyclic voltammetry profiles of (a) AGC and (b) AGC-N at 0.1 mV s⁻¹, Cyclic voltammetry profiles of (c) AGC and (d) AGC-N at various scan rates from 0.1 mV s⁻¹ to 2.0 mV s⁻¹ in PIBs.

Figure S5 Electrochemical performance of NVP cathode in SIBs. (a-b) SEM images, (c) XRD pattern, (d) CV profile, (e) cycling stability at 100 mA/g, and (f) GCD profiles at 100 mA/g.

Figure S6 Electrochemical performance of PTCDA cathode in PIBs. (a-b) SEM images, (c) XRD pattern, (d) CV profile, (e) cycling stability at 100 mA/g, and (f) GCD profiles at 100 mA/g.

Table S1 A comparison of recently reported hard carbon anodes employed in both SIBs and PIBs.

Name	Reversible capacity (mAh g ⁻¹ @A g ⁻¹)		Rate Capacity (mAh g ⁻¹ @A g ⁻¹)		ICE		Cycle life (Cycle number @A g ⁻¹)	
	SIBs	PIBs	SIBs	PIBs	SIBs	PIBs	SIBs	PIBs
This work AGC-NS	314.8@0.1	283.7@0.1	181.0@1.0 148.7@2.0	147.0@1.0	40.75%	30.69%	2000@1.0	1000@1.0
3D-ENTC ¹	435@0.05 364@0.1	420@0.05 399@0.1	195@5	93@5	61.6%	48.7%	500@1.0	700@1.0
HC-MX ²	368.5@0.03	280.6@0.03	98.2@2 66.7@10	210@0.05	/	/	300@0.05	100@0.05
NPHC ³	281@0.025	339@0.025	52@3.0	98@2.0	/	/	120@0.1	200@0.1
HCG ⁴	343.1@0.025 148@0.25	292.4@0.025 190@0.25	106@1.0	102@2.0	80.1%	76.4%	200@0.1	200@0.1
FAC ⁵	179.5@0.05 142.4@0.1	276.7@0.05 142.4@0.1	95@0.8	121.2@0.8	53.2%	63.4%	2000@0.4	1000@0.4
CS ⁶	252@0.05 236@0.1	331@0.05 298@0.1	104@2.0	153@2.0	/	/	/	500@2.0
CSHP ⁷	210.2@0.1	264.5@0.1	145@0.5 123@1.0	164@0.5 143@0.8	44.1%	45.1%	100@0.1	100@0.1
VCA ⁸	298@0.03	258@0.0279	209@0.3	148@2.0	/	/	100@2.0	100@2.0
Co-HMT ⁹	293@0.1 225@0.5	326@0.1 232@0.5	131@10	105@10	45%	35%	5000@2.0	5000@2.0
Fe-N/C ¹⁰	289.2@0.1 266.7@0.2	328.1@0.1 274.7	214.7@1.0 190.8@2.0	176.6@1 152.5@2	44.7%	47.6%	1000@0.5	1000@0.5
CNT/SNCF ¹¹	370.8@0.2	/	249.5@1.0 200.5@2.0	230.1@1 190.6@2	49.1%	41.6%	1000@1.0	5000@5.0
NPDCs ¹²	369@0.5	360@0.5	183@3.0 150@5.0	216@3 179@5	40.5%	44%	2000@2.0	2000@2.0
HNC-550 ¹³	474@0.05	510.2@0.05	205.1@1.0 135.2@5.0	143.9@1 93@5	76.5%	75.6%	2000@10	1000@5.0
NS-HCS ¹⁴	279.4@0.05	232.3@0.1	142.6@1 94.9@5	114.8@1 41.6@5	29.4%	/	500@0.1	700@1.0

References

1. Zhang, W.; Sun, M.; Yin, J.; Wang, W.; Huang, G.; Qiu, X.; Schwingenschlögl, U.; Alshareef, H. N., Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. *Nano Energy* **2021**, *87*, 106184.

2. Sun, N.; Zhu, Q.; Anasori, B.; Zhang, P.; Liu, H.; Gogotsi, Y.; Xu, B., MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. *Advanced Functional Materials* **2019**, *29* (51), 1906282.

3. Wen, X.; Zhang, D.; Shi, L.; Yan, T.; Wang, H.; Zhang, J., Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. *Journal of Materials Chemistry* **2012**, *22* (45), 23835-23844.

4. Yan, L.; Wang, J.; Ren, Q.; Fan, L.; Liu, B.; Zhang, L.; He, L.; Mei, X.; Shi, Z., In-situ graphene-coated carbon microsphere as high initial coulombic efficiency anode for superior Na/K-ion full cell. *Chemical Engineering Journal* **2022**, *432*, 133257.

5. Yin, J.; Zhang, W.; Huang, G.; Alhebshi, N. A.; Salah, N.; Hedhili, M. N.; Alshareef, H. N., Fly Ash Carbon Anodes for Alkali Metal-Ion Batteries. *ACS Applied Materials & Interfaces* **2021**, *13* (22), 26421-26430.

6. Wang, D.; Du, G.; Han, D.; Su, Q.; Ding, S.; Zhang, M.; Zhao, W.; Xu, B., Porous flexible nitrogen-rich carbon membranes derived from chitosan as free-standing anodes for potassium-ion and sodium-ion batteries. *Carbon* **2021**, *181*, 1-8.

7. Chen, S.; Tang, K.; Song, F.; Liu, Z.; Zhang, N.; Lan, S.; Xie, X.; Wu, Z., Porous hard carbon spheres derived from biomass for high-performance sodium/potassium-ion batteries. *Nanotechnology* **2021**, *33* (5), 055401.

 Wang, J.; Xu, Z.; Eloi, J. C.; Titirici, M. M.; Eichhorn, S. J., Ice-Templated, Sustainable Carbon Aerogels with Hierarchically Tailored Channels for Sodium-and Potassium-Ion Batteries. *Advanced Functional Materials* 2022, 32(16), 2110862.
Liu, S.; Yang, B.; Zhou, J.; Song, H., Nitrogen-rich carbon-onion-constructed nanosheets: an ultrafast and ultrastable dual anode material for sodium and potassium storage. *Journal of Materials Chemistry A* 2019, 7 (31), 18499-18509.

10. Liu, Y.; Li, X.; Zhang, F.; Long, G.; Fan, S.; Zheng, Y.; Ye, W.; Li, Q.; Wang, X.; Li, H., Fe, N co-doped amorphous carbon as efficient electrode materials for fast and stable Na/K-storage. *Electrochimica Acta* **2021**, *396*, 139265.

11. Chen, D.; Huang, Z.; Sun, S.; Zhang, H.; Wang, W.; Yu, G.; Chen, J., A Flexible Multi-Channel Hollow CNT/Carbon Nanofiber Composites with S/N Co-Doping for Sodium/Potassium Ion Energy Storage. *ACS Applied Materials & Interfaces* **2021**, *13* (37), 44369-44378.

12. Tao, S.; Xu, W.; Zheng, J.; Kong, F.; Cui, P.; Wu, D.; Qian, B.; Chen, S.; Song, L., Soybean roots-derived N, P Co-doped mesoporous hard carbon for boosting sodium and potassium-ion batteries. *Carbon* **2021**, *178*, 233-242.

13. Huang, R.; Cao, Y.; Qin, S.; Ren, Y. X.; Lan, R.; Zhang, L.; Yu, Z.; Yang, H., Ultra-high N-doped Open Hollow Carbon Nano-cage with Excellent Na⁺ and K⁺ Storage Performances. *Materials Today Nano* **2022**, 100217, DOI: https://doi.org/10.1016/j.mtnano.2022.100217.

14. Sun, D.; Lin, S.; Yu, D.; Wang, Z.; Deng, F.; Zhou, X.; Ma, G.; Lei, Z., Interlayer and doping engineering in partially graphitic hollow carbon nanospheres for fast sodium and potassium storage. *Chinese Chemical Letters* **2022**, DOI: https://doi.org/10.1016/j.cclet.2022.03.062.