Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supplementary Information for

Synthesis of Photocatalytic Pore Size-Tuned ZnO Molecular Foams

Zachary Warren,^a Thais Tasso Guaraldo, ^a Jannis Wenk ^a and Davide Mattia*^a

Table S1: Table of conditions investigated in research for MolFoam production

Parameter	Initial condition	Preliminary findings	Final condition
Zinc source.	Zn(Ac) ₂ used as Zn salt.	Issues of solubility and basicity lead to structurally weak foams.	Zn (AcAc) ₂ selected as alternative Zn salt.
Use of surfactant	No surfactant used.	Foams shorter than reported here, very little porosity seen in MicroCT.	CTAB 5mM added to solution.
Flow rate of air	0.5 sL min ⁻¹	Higher flow rates of air (0.5-, 0.25- sL min ⁻¹) lead to faster evaporation of EtOH causing poor gelling and fragile foams.	0.1 sL min ⁻¹
Calcination step	Foams calcined at 500 °C for 3 hours prior to sintering.	Calcining to remove organics unnecessary due to sintering and additional heating/cooling cycle leads to weaker foams	Calcination step removed, 12 hours sintering step only.
Sintering time	12, 15, 18, 20 hours sintering	Batch degradation experiments showed 20 hours sintering at 900 °C lead to greatest photocatalytic activity	900 °C ,20-hour sintering step
Sintering profile	Single step sintering process	Foams unsuitable for use within recirculating reactor.	Two step sintering condition adopted 1,000 °C ,0.5-hour + 900 °C ,20-hour
Sintering parameters	Two step sintering condition 1,000 °C ,0.5-hour + 900 °C ,20-hour	Multiple conditions (1,000 °C ,1 -hour + 900 °C ,20-hour / 950 °C ,0.5 - hour + 900 °C ,20-hour/ 950 °C ,1.0 - hour + 900 °C ,20-hour) analysed using degradation experiments, No significant change in degradation results, but original sintering conditions resulted in larger, more mechanically stable foams.	Two step sintering condition adopted 1,000 °C ,0.5-hour + 900 °C ,20-hour

Inner diameter = 20 mm

Figure S1: 3D model of printed buffer included inside reactor cartridges.

Figure S2: Schematic diagrams for recirculating photocatalytic reactors. Labelled are I) quartz tube containing foam surrounded by UV lamps, II) gear pump Ismatec, MCP-Z with a pump head Model GBS.P23.JVS.A-B1 and III) reservoir 500 mL)

Figure S3: a) schematic diagram of bespoke dyeing rig to test dye uptake into MolFoam pores. b) photograph of dyeing rig in operation. c, d) A dyed MolFoam before and after being cut open.

Figure S4: XRD pattern of ZnO MolFoams synthesised using different CTAB concentrations. Tick marks correspond to peaks reported from JCPDS No. 36-1451 ¹

Figure S5 Various characterisations of ZnO MolFoams synthesised using 5 mM CTAB solutions a,b) FESEM c-e) MicroCT slices and f-g) 3D reconstructions based on MicroCT.

Figure S6: FE-SEM micrographs of ZnO MolFoams synthesised using a) 5mM, b) 10 mM, c) 15 mM and d) 20 mM CTAB solutions.

Figure S7: FE-SEM micrographs of ZnO MolFoams(a, c,e) before and (b,d,f) after application within reactor for photocatalytic CBZ degradation

Figure S8: Removal of CBZ using MolFoams synthesised using 10 mM CTAB within a recirculating reactor operated at flow rate of 250 mL min⁻¹ [Photocatalysis , Photolysis , Adsorption].

Figure S9: Photocatalytic degradation of CBZ using MolFoams synthesised using 10 mM CTAB within a recirculating reactor operated at various flow rates [\blacksquare 200 mL min⁻¹, \bullet 250 mL min⁻¹, \blacksquare 300 mL min⁻¹, O 400 mL min⁻¹]

Figure S10: Comparison between photocatalytic CBZ degradation after 120 mins, pseudo first order reaction kinetics (bar) and zinc concentration post PCA of MolFoam reactors operating at various flow rates.

Text S1. UV dose and quantum yield calculations

Within a recirculating reactor, the entire solution volume is not irradiated at any one time as with a batch reactor. The UV dose was calculated in equation S1 and the light attenuation calculated as shown in equation S2.²

$$UV Dose [mJ cm^{-2}] = Irradiation time [s] * I_{0\lambda} * (\tau * \frac{V_r}{V_0}) [mW cm^{-2}]$$

$$I_{\alpha\lambda} = I_{0\lambda} (1 - 10^{((\epsilon H_2^O * [H_2^O] + \epsilon CBZ * [CBZ])L)}$$
(S2)

Where $I_{0\lambda}$ is the incident light emitted by the UV lamps (mW cm⁻²), τ is total residence time within the foam (s), V_r is the volume receiving UV dose within the foam per second (mL s⁻¹) and V_0 is the total volume of the reservoir (mL).

The measured light intensity was 10.4 mW cm⁻², τ was 4.5 seconds, V_r was dependent of flow rate and tabulated below, and V₀ was 500 mL. These conditions are exclusive to wavelengths of 254 nm only.

Flowrate	Volume of liquid exposed to
(mL min⁻¹)	UV within the foam per
	second (mL s ⁻¹)
100	1.67
200	3.33
300	5.00
400	6.67
500	8.33

Table S2: Tabulation of V_r for corresponding flow rates.

Table S3: Tabulation of UV dose for recirculating reactors at various flow rates.

Time (s)	UV Dose (100 mL min ⁻¹) (mJ cm ⁻²)	UV Dose (200 mL min ⁻¹) (mJ cm ⁻²)	UV Dose (250 mL min ⁻¹) (mJ cm ⁻²)	UV Dose (300 mL min ⁻¹) (mJ cm ⁻²)	UV Dose (400 mL min ⁻¹) (mJ cm ⁻²)	UV Dose (500 mL min ⁻¹) (mJ cm ⁻²)
0	0	0	0	0	0	0
900	139	278	348	348 417		695
1800	278	556	695	834	1112	1391
2700	417	834	1043	1251	1669	2086
3600	556	1112	1391	1669	2225	2781
5400	834	1669	2086	2503	3337	4172
7200	1112	2225	2781	3337	4450	5562

The calculations for the quantum yield are based on the energy and photon flux of the system.³

Planck's equation was used to convert the energy value of the lamps into photon flux, Equation S3.

$$E_p = \frac{h * c}{\lambda} \tag{S3}$$

Where h is Planck's constant (6.626 X 10 $^{-34}$ J s), c is the speed of light (2.998 X 10 $^{-8}$ m s⁻¹) and λ is the wavelength of light (m) from the lamps used in these experiments. Considering the wavelength of 254 nm (2.54 X 10 $^{-7}$ m) from the light source in this study, the calculated energy was 7.82 X 10 $^{-19}$ J.

Using this, the number of photons can be calculated using Equation S4.

$$N_P = \frac{E}{E_P} \quad (S4)$$

Where E_p was calculated previously, E is the incident light intensity with attenuation (W m⁻²). The number of photons was calculated to be 1.32 X 10²⁰ (m⁻² s⁻¹).

The photon flux can be determined as the ratio of number of photons (N_P , see above) and Avogadro's number (6.02 X 10²³ mol⁻¹) The photon flux, calculated using Equation S5 was 2.19 X 10⁻⁴ mol m⁻² s⁻¹.

$$E_{qf} = \frac{N_P}{N_A}$$
 (S5)

Text S2. Photocatalytic reactor energy consumption calculations.

To assess the viability of scaling up of the system, the energy consumption of the reactor was accounted for by using the electrical energy per order (E_{EO}), defined as the kilowatt hours of electrical energy needed to decrease the concentration of a pollutant by an order of magnitude (90%) in one cubic metre of solution: ⁴

$$E_{EO} = \frac{P * t * 1,000}{V(\log^{C_0} / C_t)}$$
(S6)

Where: P is the total power output of the 3 lamps onto the 12 cm long quartz tube (kW), t is the irradiation time (hrs) V is the volume of reservoir (L) and C_0 and C_t are the initial and final concentrations of pollutants respectively. As the foam occupied only a fraction of the quartz tube, the total power of the lamps, which act on the whole quartz tube, was multiplied by the volumetric fraction occupied by the foam (i.e. foam volume/quartz tube volume), to provide the effective power used for photocatalysis, considering that the contribution of photolysis is negligible. This is rendered necessary by the recirculating nature of the reactor, unlike a simple batch reactor, where the entire reservoir would be irradiated. In the present work, the external diameter of the foam corresponds to the internal diameter of the tube, so that the volumetric fraction is equivalent to the ratio of the foam's length to the total length of the quartz tube: 2 cm/12 cm = 0.17.

For the recirculating MolFoam reactors, three 5 W lamps were used, giving a P value of 15 X 10⁻³ kW, irradiation time was 120 minutes, volume of solution was 0.5 L, and the volumetric fraction 0.17.

Table S4: Degradation, pseudo-first order kinetics, quantum yield and E_{EO} data for MolFoams synthesised using 5 mM CTAB

Flow Rate (mL min ⁻¹)	C ₁₂₀ /C ₀	k (X10 ⁻³) (min ⁻¹) Φ _{Overall}		E _{EO} (KWh m ⁻³)
100	0.64	4.18	0.32	49.84
200	0.54	4.45	0.34	39.71

300	0.54	5.77	0.44	37.37
400	0.43	6.24	0.48	27.28

Table S5: Degradation, pseudo-first order kinetics, quantum yield, zinc concentration and E_{EO} data for MolFoams synthesised using 10 mM CTAB

Flow Rate /mL min ⁻¹	C ₁₂₀ /C ₀	k (x10 ⁻³) /min ⁻¹	Φ_{Overall}	[Zn] [ppb]	E _{EO} /KWh m ⁻³ order ⁻¹
200	0.48 ± 0.02	5.43 ± 0.36	0.41	569	31.37 ± 1.85
250	0.34 ± 0.01	9.08 ± 0.44	0.69	471	21.34 ± 0.59
300	0.42 ± 0.06	8.01 ± 0.41	0.61	757	26.54 ± 4.83
400	0.44 ± 0.03	6.74 ± 0.12	0.51	631	28.05 ± 2.45

Text S3. Hydrodynamics calculations.

Table S6: Hydrodynamic data and calculations for 5 mM CTAB foams

flow rate	flow rate	flow velocity	Re _{Dh}	Pe	Sc	Sh
(mL min ⁻¹)	(m³ s-1)	(m s ⁻¹)				
100	1.67×10 ⁻⁶	4.39×10 ⁻³	3	4913		5
200	3.33×10 ⁻⁶	8.77×10 ⁻³	5	9826		7
250	4.17×10 ⁻⁶	1.10×10 ⁻²	7	12283	1.75×10 ³	8
300	5.00×10 ⁻⁶	1.32×10 ⁻²	8	14739		9
400	6.67×10 ⁻⁶	1.75×10 ⁻²	11	19652		11
500	8.33×10 ⁻⁶	2.19×10 ⁻²	15	24565		12

Table S7: Hydrodynamic data and calculations for 10 mM CTAB foams

flow rate	flow rate	flow velocity	Re _{Dh}	Pe	Sc	Sh
(mL min ⁻¹)	(m³ s-1)	(m s ⁻¹)				
100	1.67×10 ⁻⁶	4.39×10 ⁻³	2	4036	- - - 1.75×10 ³	4
200	3.33×10 ⁻⁶	8.77×10 ⁻³	4	8071		6
250	4.17×10 ⁻⁶	1.10×10 ⁻²	5	10089		7
300	5.00×10 ⁻⁶	1.32×10 ⁻²	7	12107		7
400	6.67×10 ⁻⁶	1.75×10 ⁻²	9	16143		9
500	8.33×10 ⁻⁶	2.19×10 ⁻²	12	20179		10

$$Re_{D} = \frac{\rho QD_{p}}{\mu A\varepsilon}$$
(S7)

$$Pe = \frac{uD_{p}}{D}$$
(S8)

$$Sc = \frac{\mu}{\rho D}$$
(S9)

$$Sh = 1.029 * Sc^{0.33} * Re_{D_{h}}^{0.55} * \left(\frac{L}{D_{p}}\right)^{-0.472}$$
(S10)

Where Q is the volumetric flow rate of the fluid, D_p is the macropore size of the foams, μ is the dynamic viscosity of the fluid, A is the cross-sectional area of the foam, ϵ is the porosity of the foam, u is the mean velocity of the fluid, D is the diffusion coefficient of Carbamazepine, ^{5, 6} ρ is the density of the fluid and L is the length of the foam. Re, Pe, Sc and Sh are the dimensionless numbers, Reynolds, Peclet, Schmidt and Sherwood.

Reynolds number for the foam system (Eq S7) was calculated as reported by Mohsen Karimian et al.⁷

Text S4. Comparison with literature.

Table S8: CBZ photocatalytic	c degradation kinetics for sl	lurries and immobilised systems	reported from literature.

Material	Photocatalyst	Degradation conditions	[CBZ] ₀	Kinetics	Eeo	QY	Ref
ZnO	0.1 g L ⁻¹	Batch reactor	50 mg L ⁻¹	3.7 X 10 ⁻³	46.48	0.0003	8
ZnFe ₂ O ₄	NP suspension	100 mL volume		36.7 X 10 ⁻³	4.69	0.0020	7
		Temperature: 25 °C					
		Xenon Lamp,					
		(5 KW, 5.5 W cm ⁻² , 6000 K, 483 nm)		_			
TiO ₂	1.0 g L ⁻¹	Batch reactor	0.75 mg L ⁻¹	4.7 X 10 ⁻³		0.0050	9
g-C ₃ N ₄	NP suspension	60 mL volume		566.8 X 10 ⁻³		0.60	
		LED lamp (λ_{max} 417 nm, 450 W cm ⁻²)					
g-C ₃ N ₄ /TiO ₂	1.0 g L ⁻¹	Batch reactor	10.0 mg L ⁻¹	5.5 X 10 ⁻³	187.09		10
composites	NP suspension	100 mL volume					
		LED lamp (50 W, 475 nm)					
N-doped TiO ₂ -	1.0 g L ⁻¹	Batch reactor	2.0 mg L ⁻¹	2.2 X 10 ⁻³	188.24		11
SiO ₂ -Fe ₃ O ₄	NP suspension	250 mL reactor					
		Compact fluorescent lamp (9 W,					
		320 μW cm ⁻² , 365 nm)					
TiO ₂	57 mg L ⁻¹	Recirculating reactor, flow rate 100	0.4 mg L ⁻¹	22.1 X 10 ⁻³	153.00	0.39	12
	NP supported on	mL min ⁻¹ , 500 mL volume					
	PVDF dual layer	Hg lamp (40 W, 45.0 W cm ⁻² , 254					
	hollow	nm)					
	fibre membrane		1			<u> </u>	12
1102	P25 commercial NPs	Batch reactor	2.4 mg L ⁻¹	32.2 X 10 ⁻⁵	395.48		15
	dispersed in MeOH	50 mL volume					
	before electrospray	Six 4-W blacklight					
	(2 E X E 0 am)	510T8 Janan 265 nm					
TiO	(2.5- X 5.0 CIII)	Pitolo, Japan) 305 mm	0.1 mg 1:1	17.0 V 10-3	27.01	+	14
1102	through plasma	Batch reactor	0.1 mg L-1	17.9 X 10 ⁻⁵	37.01		14
	chrough plasma	Lamp (20 W low prossure Havapor					
	of Timeshes	Lilly (50 w low-pressure ng vapor					
	(geometric area	0 v-c, 234 mm.)					
	327.5 cm^2						
TiO	0.5 g l -1	Recirculating reactor flow rate 83.3	5.0 mg l ⁻¹	23 4 X 10-3	4.05	+	15
1102	NP suspension (P25)	ml min ⁻¹ 1 000 ml volume	5.0 mg 2	25.4 / 10	4.05		
	···· suspension (i 25)	A blacklight-blue lamp (HOPower					
		Lamp15TBL.					
		nominal power 15 W. 365 nm)					
TiO ₂	TiO ₂ drop coated	Flow photocatalytic membrane	1.0 mg L ⁻¹	4.0 X 10 ⁻³	2994.01	0.02	16
	onto α -Al ₂ O ₃	reactor					
	microfiltration	Volume 200 mL					
	membranes	Xenon lamp(300 W, 76.7 mW cm ⁻²)					
TiO ₂	1.0 g L ⁻¹	Batch reactor	12.0 mg L ⁻¹	15.4 X 10 ⁻³	191.01	0.25	17
ZnO	NP suspension	50 mL volume		30.1 X 10 ⁻³	624.49	0.49	7
		Hg Lamps (6 X 8 W, 1.6mW cm ⁻² ,					
		365 nm)					
C- TiO ₂	0.1 g L ⁻¹	Batch reactor	0.05 mg L ⁻¹	2.3 X 10 ⁻³	166.39	0.18	18
	NP suspension	400 mL volume					
		Tungsten lamp (150 W, 6.3mW cm ⁻					
		² , 400 nm)					
TiO ₂	12.5 g L ⁻¹	Batch reactor	5 mg L-1	0.5 X 10 ⁻³	12902.72	0.17	19
	NP supported on	500 mL volume					
	sand	Xe high intensity lamp (55 W, 1.26					
		mW cm ⁻² , 475 nm)				<u> </u>	
ZnO	1.5 g L ⁻¹ foam	Recirculating reactor, flow rate 250	2.4 mg L ⁻¹	9.1 X 10 ⁻³	21.34	0.69	This
		mL min ⁻¹ , 500 mL volume					work
		Lamps (3 X 5 W, 10.3 mW cm ⁻² , 254					
1		nm)	1				

References

- 1. R. Boppella, K. Anjaneyulu, P. Basak and S. V. Manorama, *The Journal of Physical Chemistry C*, 2013, **117**, 4597-4605.
- 2. C. M. Taylor, A. Ramirez-Canon, J. Wenk and D. Mattia, J Hazard Mater, 2019, 378, 120799.
- 3. S. W. da Silva, J. P. Bortolozzi, E. D. Banús, A. M. Bernardes and M. A. Ulla, *Chemical Engineering Journal*, 2016, **283**, 1264-1272.
- 4. J. R. Bolton, K. G. Bircher, W. Tumas and C. A. Tolman, *Pure and Applied Chemistry*, 2001, **73**, 627-637.
- 5. J. R. Crison, V. P. Shah, J. P. Skelly and G. L. Amidon, *J Pharm Sci*, 1996, **85**, 1005-1011.
- 6. Y. Lu and M. Li, *J Pharm Sci*, 2016, **105**, 131-138.
- 7. S. A. M. Karimian and A. G. Straatman, *International Journal of Heat and Fluid Flow*, 2008, **29**, 292-305.
- 8. H. Mohan, V. Ramalingam, A. Adithan, K. Natesan, K. K. Seralathan and T. Shin, *J Hazard Mater*, 2021, **416**, 126209.
- 9. N. F. F. Moreira, M. J. Sampaio, A. R. Ribeiro, C. G. Silva, J. L. Faria and A. M. T. Silva, *Applied Catalysis B: Environmental*, 2019, **248**, 184-192.
- 10. Z. Hu, X. Cai, Z. Wang, S. Li, Z. Wang and X. Xie, *J Hazard Mater*, 2019, **380**, 120812.
- 11. A. Kumar, M. Khan, L. Fang and I. M. C. Lo, *J Hazard Mater*, 2019, **370**, 108-116.
- 12. L. Paredes, S. Murgolo, H. Dzinun, M. H. Dzarfan Othman, A. F. Ismail, M. Carballa and G. Mascolo, *Applied Catalysis B: Environmental*, 2019, **240**, 9-18.
- 13. S. Ramasundaram, M. G. Seid, H. E. Kim, A. Son, C. Lee, E. J. Kim and S. W. Hong, *J Hazard Mater*, 2018, **360**, 62-70.
- 14. S. Murgolo, S. Franz, H. Arab, M. Bestetti, E. Falletta and G. Mascolo, *Water Res*, 2019, **164**, 114920.
- 15. E. Mena, A. Rey and F. J. Beltrán, *Chemical Engineering Journal*, 2018, **339**, 369-380.
- 16. I. Horovitz, D. Avisar, M. A. Baker, R. Grilli, L. Lozzi, D. Di Camillo and H. Mamane, *J Hazard Mater*, 2016, **310**, 98-107.
- 17. S. Teixeira, R. Gurke, H. Eckert, K. Kühn, J. Fauler and G. Cuniberti, *Journal of Environmental Chemical Engineering*, 2016, **4**, 287-292.
- 18. A. Surenjan, B. Sambandam, T. Pradeep and L. Philip, *Journal of Environmental Chemical Engineering*, 2017, **5**, 757-767.
- 19. Y. He, N. B. Sutton, H. H. H. Rijnaarts and A. A. M. Langenhoff, *Applied Catalysis B: Environmental*, 2016, **182**, 132-141.