Supplementary Information

Design of multi-functional gel polymer electrolyte with 3D compact stacked polymer micro-sphere matrix for highperformance lithium metal batteries

Jiyuan Liang^{a*‡}, Runming Tao^{bc‡}, Ji Tu^{a‡}, Chi Guo^a, Kang Du^a, Rui Guo^a, Wang

Zhang^a, Xiaolang Liu^a, Pingmei Guo^a, Deyu Wang^a, Sheng Dai^{bc*}, Xiao-Guang Sun^{c*}

a. Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education,
School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, China
b. Department of Chemistry, University of Tennessee, Knoxville, TN 37996
c. Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

[‡] These authors contributed equally to this work.

Corresponding authors:

E-mail: liangjy2004@126.com (Dr. J. Liang); <u>dais@ornl.gov</u> (Dr. S. Dai); sunx@ornl.gov (Dr. X-G. S).

Fig. S1. ¹H NMR spectra of HEA, PETEA and PHGPE

Fig. S2. (a, b) SEM images of PGPE matrix. (c, d) TEM images of PGPE

matrix.

Fig. S3. The chronoamperometry profiles of (a) Li||PGPE||Li and (b) Li||LE||Li cells under a polarization voltage of 10 mV. The corresponding EISs before and after polarization are shown in the insets.

Fig. S4. Ionic conductivities of PGPE and PHGPE as a function of temperature.

Fig. S5. Cycling performance of Li||PHGPE||Li symmetric cells at (a-b) 3 mA cm⁻², 1 mAh cm⁻², (c-d) 0.5 mA cm⁻², 2 mAh cm⁻², (e-f) 1 mA cm⁻², 2 mAh cm⁻².

Fig. S6. (a) SEM image of Lithium metal in PHGPE based symmetric cell after 960 h cycling with a cycling capacity of 2 mAh cm⁻² at a current rate of 1 mA cm⁻²: (b) Nyquist plots of Li||PHGPE||Li symmetric cell before and after cycling.

Fig. S7. F-1s HRXPS spectra of (a) LE, (b) PGPE and (c) PHGPE at different sputtering depths after 10 cycles of symmetric Li-ion battery. C-F: 688.7 eV, LiF: 684.5 eV.

Fig. S8. Li-1s HRXPS spectra of (a) LE, (b) PGPE, (c) PHGPE at different sputtering depths after 10 cycles of symmetric Li-ion battery. LiF: 56.88 eV, Li₂CO₃: 55.38 eV, LiCOOR: 54.88 eV, Li₂O:54.28 eV.

Fig. S9. O-1s HRXPS spectra of (a) LE, (b) PGPE, (c) PHGPE at different sputtering depths after 10 cycles of symmetric Li-ion battery.

Fig. S10. Capacity voltage distribution of Li||electrolyte||LFP at different multipliers, (a) PGPE; (b) LE.

Fig. S11. Digital images of Li foil for nickel tabs

	1		
Electrolyte	Current density / areal	Plating/	Ref.
	capacity (mA cm ⁻² / mAh cm ⁻	stripping	
	2)	(hours)	
SPE1-PI-ZIF8	0.1/0.1	800 h	
	0.3/0.3	300 h	
Li/CF composites	0.25/0.5	750 h	2
	0.5/0.5	560 h	
PEO-SCN-LiTFSI	0.05/0.05	600 h	3
Al ₂ O ₃ -GPE	1/1	1000 h	4
CSE-B- 71515	0.2/0.2	333 h	5
PDADMA-FSI	0.1/0.1	225 h	6
IPN9-10PPC	1.5/1.5	300 h	7
PIL-IPN	0.5/1.5	1800 h	8
POSS-4PEG2K	0.3/0.9	2600 h	9
GPR5-LiTFSI	0.1/0.1	600 h	10
PVDF film	0.5/0.5	1400 h	11
	1/1	650 h	
	1/2	370 h	
Li ₃ PO ₄ /PVA layer	1/2	1000 h	12
PU-LiF	1/1	1000 h	13
	1/2	800 h	
PHGPE	1/1	6000 h	This
	0.5/2	7700 h	work
	1/2	7700 h	

Table S1. The comparison of Li||Li symmetrical cell cycling performances between this work and other reported literatures.

Cell components	Specification	Parameters
Cathode (LFP)	Areal mass loading (mg cm ⁻²)	11.71
	The area of cathode (mm × mm)	50 × 83
	The content of LFP (wt.%)	96
	Folds	12
Anode (Lithium foil)	Thickness (µm)	60
	The area of lithium foil (mm*mm)	55×88
	Folds	13
Electrolyte	1.0 M LiPF ₆ in EC : DMC=1 : 1 V/V	
	(contain 1.5% of the mass fraction with	
	PHGPE)	
	The mass of electrolyte (g): capacity of	2:1
	pouch cell (Ah)	
Pouch cell	Specific capacity (Ah)	1

Table S2. The specifications of the Li||LFP pouch cell.

Reference:

[1] Wang G, He P, Fan L. Asymmetric Polymer Electrolyte Constructed by Metal-Organic Framework for Solid-State, Dendrite-Free Lithium Metal Battery[J]. Advanced Functional Materials, 2020, 31(3): 2007198.

[2] Zhang Y, Shi Y, Gu Y, et al. A 3D Lithium/Carbon Fiber Anode with Sustained Electrolyte Contact for Solid-State Batteries[J]. Advanced Energy Materials, 2020, 10(3): 1903325.

[3] He Y, Chen S, Nie L, et al. Stereolithography 3D Printing Solid Polymer Electrolytes for All-Solid-State Lithium-Metal Batteries[J]. Nano Letters, 2020, 20(10): 7136-7143.

[4] Wang S, Zhou L, Yang W, et al. In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries[J]. Chemical Engineering Journal, 2021(4):128846.

[5] Yang L, Wang Z, Feng Y, et al. Flexible Composite Solid Electrolyte Facilitating Highly Stable "Soft Contacting" Li–Electrolyte Interface for Solid State Lithium-Ion Batteries[J]. Advanced Energy Materials, 2017, 7(22):1701437.

[6] Wang X, Chen F, Girard G, et al. Poly(Ionic Liquid)s-in-Salt Electrolytes with Co-coordination-Assisted Lithium-Ion Transport for Safe Batteries[J]. Joule, 2019, 3(11):1-16.

[7] Zheng Y, Li X, Li C. A novel de-coupling solid polymer electrolyte via semi-interpenetrating network for lithium metal battery[J]. Energy Storage Materials, 2020, 29:42-51.

[8] Li X, Zheng Y, Pan Q, et al. Polymerized Ionic Liquid-Containing Interpenetrating Network Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries[J]. ACS Applied Materials Interfaces, 2019, 11(38): 34904-34912.

[9] Smith D, Pan Q, Wang S, et al. Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries[J]. Advanced Materials, 2015, 27(39):5995-6001.

[10] Imholt L, Zhang P, Ibing Lukas, et al. Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries[J]. Journal of Power Sources, 2019, 409: 148-158. [11] Gao Z, Zhang S, Huang Z, et al. Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries. Chinese Chemical Letters, 2019, 30(2): 525-528.

[12] Hao S, Ma Z, Zhao Y, et al. In Situ Li₃PO4/PVA Solid Polymer Electrolyte Protective LayerStabilizes the Lithium Metal Anode. ACS omega, 2020, 5(14):8299-8304.

[13] Liu Y, Tao R, Chen S, et al. A novel polyurethane-LiF artificial interface protective membrane as a promising solution towards high-performance lithium metal batteries[J]. Journal of Power Sources, 2020, 477: 228694.,