Supporting Information:

Figure S1. Digital images of Li and Li-Zn composite

Figure S2. Phase diagram of Li-Zn composite

Figure S3. XRD of Li-Zn composites with different Zn dosage.

Figure S4. The SEM images of 3D skeleton of 50µm-thick Li-Zn foil after extracting 85% of

Li inventory (8 mAh cm⁻²).

Figure S5. SEM images of the deposition layer of bare-Li (a) and LiZn (b) under 4 mAh cm⁻ ², respectively.

Figure S6. XRD of the Li-Zn anode with 1-3 mAh cm⁻² plating.

Figure S7. Cross-sectional SEM and EDS images of Li-Zn composite with 3 mAh $\rm cm^{-2}$

plating.

Figure S8. The cross-section SEM image of Li-Zn foil after 100 plating/stripping tests under the condition of 5 mA cm⁻² and 2 mAh cm⁻² (ended at stripping state).

Figure S9. Stripping/plating test of bare-Li and Li-Zn composite symmetric cells (a) with an area capacity of 1 mAh cm⁻² at 2 mA cm⁻² with the electrolyte of 1M LiTFSI in DOL/DME (1:1 by volume) with 1 ωt% LiNO₃, and (b) with an area capacity of 2 mAh cm⁻² at 5 mA cm⁻² with the electrolyte of 2M LiFSI in DME. The depth of discharge (DOD) is 20%.

Figure S10. Contact angle measurements of the electrolyte (1M LiFP₆ in EC/DEC=v/v =1:1 with 10wt% FEC and 1wt% VC as additives) on the (a) bare-Li and (b) Li-Zn composite.

				8 1
Mass ratio	Mass ratio	Ar(Zn)/	Ar(Li) /	Mass ratio (Zn) / Ar (Zn) / [Mass ratio (Zn) /
(Zn)	(Li)	g mol ⁻¹	g mol ⁻¹	Ar (Zn) + Mass ratio (Li) / Ar (Li)]
0.3	0.7	65.38	6.94	4.35%
				Letter and the second se

Table S1. Calculation of Zn dosage of Li-Zn composite

			1 2	1
Discharge	Diamatan/man	Thioknoss/um	Volumetric	Gravimetric
quantity/mAh	Diameter/imm	Thekness/µm	capacity/mAh cm ⁻³	capacity/mAh g ⁻¹
12.541	12	59	1880.4	2544.0

Table S2. Calculation of volumetric capacity of Li-Zn composite

			Positive				
Recipe	N/P	Reference	capacity	Cathode	Electrolyte/µL	Cycle	Current/C-
	ratio		/mAh			life	rate
			cm ⁻²				
Li-LPS	253.7	Ref.32	0.39	LCO	/	200	1
Li-LiF	189.8	Ref.35	0.25	LFP	60	100	2
Li-Ca	128.8	Ref.29	0.32	LCO	/	500	1
Li ₁₀ Zn	111.4	Ref.28	0.70	LTO	/	4000	1
Li ₁₃ In ₃ Li	85.8	Ref.37	0.38	LTO	40	1500	5
Armored Li	71.4	Ref.36	1.44	NCM	80	150	0.5
Patterned Li	69.8	Ref.38	1.33	LMO	250	450	0.5
GaLi-Li	42.8	Ref.13	1.68	LFP	100	200	0.5
Li-0.3Zn	40.8	Ref.27	0.26	LFP	/	200	1
Mg-Li	38.7	Ref.26	0.80	LFP	30	100	3
LLN@Li	10.3	Ref.34	1.00	LFP	50	150	1
Li-Al	10.0	Ref.23	4.10	NCM	30	180	1
Li@PI-							
ZnO	2.2	D_{of} 22	2.00	LTO	50	100	0.5
@Cu3N-	3.3	Ke1.33	3.00	LIU	50	100	0.5
SBR							
Li-Zn	3.3	Our work	3.00	LFP	40	130	0.5
Li@SCS	1.2	Ref.11	2.70	LFP	80	45	0.5

Table S3. Coin cells with different N/P ratio

Discharge Energy/Wh	Electrode & Separator/g	Electrolyte/ g	Thickness of Electrode & Separator /µm	Volume/cm ⁻ 3	Volumetric Energy Density/Wh L ⁻¹	Mass Energy Density /Wh kg ⁻ 1
2.782	5.1	2.7	910	2.275	1222.9	356.7

Table S4. Calculation of the energy density of jelly roll