A Metal-Covalent Organic Framework Catalyst with Pincer

Coordination Units for Boosting Transfer Hydrogenation of

Quinolines with Ammonia Borane

Wenying $\mathrm{Ai}^{1 *}$, Xiao Du^{1}, Yu Yang 1, Zelin Zheng ${ }^{1}$, Lipeng Zhai ${ }^{1}$, Baiwei Ma ${ }^{1}$, Siwen Cui ${ }^{1}$, Pengyu Li^{1}, Liwei $\mathrm{Mi}^{1 *}$, and Lingbo $\mathrm{Qu}^{2 *}$
${ }^{1}$ Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, School of Material and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007 (P. R. China)
${ }^{2}$ College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province 450001, People’s Republic of China

Contents

Section A. Materials and Methods
Section B. Synthetic Procedures
Section C. Supporting Figures
Section D. Supporting Tables
Section E. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of THQs
Section F. Copies of NMR Spectra
Section G. Supporting References

Section A. Materials and Methods

Nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were measured on a Bruker 400 MHz spectrometer. The chemical shifts were reported in ppm referenced to the deuterated solvents. Solid state Fourier ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker 400 MHz spectrometer. X-ray diffraction (XRD) data were performed on a Bruker D8 Focus Powder X-ray Diffractometer by using powder on glass substrate, from $2 \theta=2^{\circ}$ up to 30° with 0.01° increment. Fourier transform infrared (FT IR) spectra were recorded on a JASCO model FT IR-6100 infrared spectrometer. TGA measurements were recorded on a Discovery TGA under N_{2}, by heating from 30 to 800 ${ }^{\circ} \mathrm{C}$ at a rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Elemental analysis was performed on an Elementar vario MICRO cube elemental analyzer. Nitrogen sorption isotherms were measured at 77 K with a TriStar II instrument (Micromeritics). The Brunauer-Emmett-Teller (BET) method was utilized to calculate the specific surface areas. By using the non-local density functional theory (NLDFT) model, the pore volume was derived from the sorption curve. Morphology images were characterized with a Zeiss Merlin Compact filed emission scanning electron microscope (FE-SEM) equipped with an energydispersive X-ray spectroscopy (EDS) system at an electric voltage of 5 KV . ICP-MS was carried out on a Perkin-Elmer Elan DRC II quadrupole inductively coupled plasma mass spectrometer analyzer. X-ray photoelectron spectroscopy (XPS) experiments were performed on a Thermo Scientific K-Alpha XPS spectrometer using an AlKa Xray radiation source.

Simulations. The process of simulating COF structure was accomplished via Materials Studio software (version 8.0) of Accelrys Company. The hexagonal crystal system with P6 symmetry group was set as the initial AA stacking COFs structures. The cell parameters a and c were obtained from the calculation of experimental PXRD of COF by Bragg's law. After the smallest asymmetric unit was filled into the blank cell, the Forcite tools package was employed to optimize the cell geometry including energy minimization. The AB stacking structure was built with the similar process as described above, with the exception that a supercell with double c value was selected as the initial
cell of staggered structure. The cell optimized from the universal force fields was subsequently refined using the Pawley refinement method in Reflex tools. ${ }^{[51-S 3]}$

Computational calculations: The crystalline structure of BIPY-COF was determined using the density-functional tight-binding (DFTB+) method including Lennard-Jones (LJ) dispersion. The calculations were carried out with the DFTB+ program package version 1.2. DFTB is an approximate density functional theory method based on the tight binding approach and utilizes an optimized minimal LCAO Slater-type all-valence basis set in combination with a two-center approximation for Hamiltonian matrix elements. The Coulombic interaction between partial atomic charges was determined using the self-consistent charge (SCC) formalism. Lennard-Jones type dispersion was employed in all calculations to describe vander Waals (vdW) and π-stacking interactions. The lattice dimensions were optimized simultaneously with the geometry. Standard DFTB parameters for X-Y element pair (X, Y = C, H, N) interactions were employed from the mio-0-1 set.

Pawley refinement: Molecular modeling and Pawley refinement were carried out using Reflex, a software package for crystal determination from XRD pattern, implemented in MS modeling version 4.4 (Accelrys Inc.). Initially, unit cell dimensions for both hexagonal and rhombic lattices were taken from the DFTB calculation and the space group for hexagonal and rhombic crystal system were selected as P6, respectively. Pawley refinement was performed for hexagonal S 4 lattice to optimize the lattice parameters iteratively until the RWP value converges. The pseudo Voigt profile function was used for whole profile fitting and Berrar-Baldinozzi function was used for asymmetry correction during the refinement processes.

Stability test. The bipy-COF sample (20 mg) was kept at room temperature for 24 h in $\mathrm{HCl}(1 \mathrm{M})$, and $\mathrm{NaOH}(1 \mathrm{M})$, respectively. The samples were collected by filtration and rinsed with water $(30 \times 3 \mathrm{~mL})$ and $\mathrm{THF} / \mathrm{MeOH}(1: 1,30 \times 3 \mathrm{~mL})$. The sample was dried at $100^{\circ} \mathrm{C}$ under vacuum overnight and subjected to PXRD.

Section B. Synthetic Procedures

2,6-Pyridine dialdehyde 1, 1,3,5-Tris(4-aminophenyl)benzene 2, AcOH, n-Butanol (BuOH) and 1,2-Dichlorobenzene (o-DCB) were purchased from Heowns. All the other solvents were purchased from Heowns and used as received without further purification.

Synthesis of bipy-COF. The synthesis of bipy-COF was carried out via Schiff-base condensation of 2,6-pyridine dialdehyde $\mathbf{1}(30.4 \mathrm{mg}, 0.225 \mathrm{mmol})$ and $1,3,5-\operatorname{tris}(4-$ aminophenyl)benzene 2 ($52.6 \mathrm{mg}, 0.15 \mathrm{mmol}$) in DCB: n-butanol ($1.5 \mathrm{~mL}, 1: 1$) using 6 M AcOH aqueous $(0.15 \mathrm{~mL})$. Then the suspension was sonicated and heated at $120^{\circ} \mathrm{C}$ for 3 days using glass ampule. The resulting precipitate was washed with THF (3×10 $\mathrm{mL})$ and $\mathrm{MeOH}(3 \times 10 \mathrm{~mL})$, and dried under vacuum overnight to generate bipy-COF as a tawny powder in 93% yield.

Synthesis of Ni-bipy-COF. Nickel acetate (25 mg) was dissolved in 20 mL of MeOH , and then bipy-COF (399.5 mg) was added. The mixture was stirred at room temperature for 48 h . The resulting precipitate was collected by centrifugation, washed with 0.5 M $\mathrm{HCl}(3 \times 10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, and $\mathrm{MeOH}(3 \times 10 \mathrm{~mL})$, respectively, and then dried under vacuum at $75^{\circ} \mathrm{C}$ overnight to give Ni-bipy-COF in 97% yield. The Ni content was $0.98 \mathrm{wt} \%$ as determined by ICP-MS.

General Procedure for the Optimization of Reaction Conditions for the Ni-bipy-COF-catalyzed Transfer Hydrogenation of Quinoline.

To a mixture of ammonia borane ($15 \mathrm{mg}, 0.4873 \mathrm{mmol}, 5.0$ equiv), Ni-bipy-COF (5 mg) and n-hexane (1 mL) in a 25 mL sealed glass tube were added quinoline (0.09747 $\mathrm{mmol}, 1.0$ equiv). The reaction was stirred at $90^{\circ} \mathrm{C}$ for 2 h . Then, the mixture was cooled to room temperature, and extracted with EtOAc. The organic layer was washed with brine (30 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the crude material was purified by column chromatography (EtOAc/petroleum ether) to afford 1,2,3,4-tetrahydroquinoline.

General Procedure for the Transfer Hydrogenation of Quinolines.

To a mixture of ammonia borane ($154 \mathrm{mg}, 5 \mathrm{mmol}, 5.0$ equiv), Ni-bipy-COF (50 mg) and n-hexane $(10 \mathrm{~mL})$ in a 50 mL sealed glass tube were added quinolines (1 mmol , 1.0 equiv). The reaction was stirred at $90^{\circ} \mathrm{C}$ for 2 h . Then, the mixture was cooled to room temperature, and extracted with EtOAc. The organic layer was washed with brine (300 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum and the crude material was purified by column chromatography ($\mathrm{EtOAc} /$ petroleum ether) to afford 1,2,3,4-tetrahydroquinolines in 98-62\% yield.

Section C. Supporting Figures

Figure S1. FT-IR spectra of bipy-COF (blue line), Ni-bipy-COF (green line), 2,6pyridine dialdehyde (black line) and 1,3,5-tris(4-aminophenyl)benzene (red line).

Figure S2. The ${ }^{13} \mathrm{C}$ CP/MAS NMR spectrum of bipy-COF and Ni-bipy-COF.

Figure S3. Thermogravimetric curves of bipy-COF (black) and Ni-bipy-COF (red).

Figure S4. Pore size distributions of bipy-COF (red) and Ni-bipy-COF (black) calculated using non-local density functional theory.

Figure S5. Nitrogen adsorption-desorption isotherms of bipy-COF and Ni-bipy-COF.

Figure S6. Experimental PXRD patterns of bipy-COF (purple), paw-ley-refined PXRD patterns of bipy-COF (green), and the corresponding difference (black); the calculated PXRD pat-terns for AA stacking (red) and AB stacking (blue).

Figure S7. Chemical stability of bipy-COF after 24 h treatment under HCl (1 M, black) and $\mathrm{NaOH}(1 \mathrm{M}$, black) at room temperature.

Figure S6. Experimental PXRD patterns of bipy-COF (red) and Ni-bipy-COF (black).

Figure S7. XPS Ni 2 p spectra of Ni-bipy-COF.

Figure S8. N 1s XPS spectra of bipy-COF (black) and Ni-bipy-COF (red).

Figure S9. The solid-state UV-vis spectra of bipy-COF and Ni-bipy-COF

Figure S10. SEM images of bipy-COF (a, b) and Ni-bipy-COF (c, d).

Figure S11. Experimental PXRD patterns of Ni-bipy-COF after the first cycle (black) and after the fifth cycle (red).

Figure S12. The ${ }^{13} \mathrm{C}$ CP/MAS NMR spectrum of Ni-bipy-COF before (green) and after the fifth cycle (red).

Figure S13. The FT-IR spectra of Ni-bipy-COF before (red) and after the fifth cycle (black) in the gram scale reaction.
a.

no product was observed
b.

c.

d.

e.

Figure S14. Control experiments.
To probe the mechanism of this reaction, control experiments were preformed (Figure S14). When the reaction was conducted without Ni-BIPY-COF catalyst, no product was observed (Figure S14a). When the reaction was conducted without quinolines as a hydrogen acceptor, no H_{2} molecule was monitored (Figure S14c). These results demonstrated that this reaction is a catalytic transfer hydrogenation process. In addition, a key reaction intermediate, quinoline-borane (Figure S14d), was observed at the beginning of the reaction (Scheme 3), and this intermediate could be transformed into the target product 4a with 95% yield under the standard conditions (Figure S14e), indicating quinoline-borane played a vital role in this catalytic transfer hydrogenation.

Figure S15. The experimental ${ }^{1} \mathrm{H}$ NMR spectra of quinoline-borane intermediate.

Figure S16. Plausible Mechanism.

Figure $\mathbf{S 1 7}$ a. Optimized geometrical structures and the electronic potential surfaces for the key intermediate and the model systems of Ni-bipy-COF. The red, green, and blue regions indicate negative, neutral, and positive electrostatic potentials, respectively. b. Distributions of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the key intermediate and the model systems of Ni-bipy-COF, respectively. All calculations were performed at the theoretical level of M06L/6-311G(d) (SDD basis set for Ni).

Figure S18. (a,b) Unit cell of eclipsed structure; (c) Side view of eclipsed structure. C: blue, N : red, and H : white.

Section D. Supporting Tables

Table S1. Optimization of reaction conditions for the Ni-bipy-COF-catalyzed transfer hydrogenation of 3a. Conditions: 3a ($0.09747 \mathrm{mmol}, 1.0$ equiv), [Ni] (5 mg), AB ($0.4873 \mathrm{mmol}, 5.0$ equiv), solvent (1.0 mL), $60 \sim 90^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

entry	solvent	catalyst	temperature	yield
1	MeOH	none	$60^{\circ} \mathrm{C}$	none
2	MeOH	$\mathrm{Ni}(\mathrm{OAc})_{2}$	$60^{\circ} \mathrm{C}$	8%
3	MeOH	$\mathrm{Ni-bipy-COF}$	$60^{\circ} \mathrm{C}$	30%
4	MeOH	bipy-COF	$60^{\circ} \mathrm{C}$	none
5	THF	Ni-bipy-COF	$60^{\circ} \mathrm{C}$	53%
6	hexane	Ni-bipy-COF	$60^{\circ} \mathrm{C}$	81%
7	Tol	Ni-bipy-COF	$60^{\circ} \mathrm{C}$	23%
8	H 2 O	Ni-bipy-COF	$60^{\circ} \mathrm{C}$	none
9	EtOH	Ni-bipy-COF	$60^{\circ} \mathrm{C}$	20%
10	$\mathrm{H}_{2} \mathrm{O}$	Ni-bipy-COF	$90^{\circ} \mathrm{C}$	none
11	EtOH	Ni-bipy-COF	$90^{\circ} \mathrm{C}$	28%
12	hexane	Ni-bipy-COF	$80^{\circ} \mathrm{C}$	90%
13	hexane	Ni-bipy-COF	$90^{\circ} \mathrm{C}$	98%

Table S2. Optimization of the equivalents of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$. Reaction conditions: 0.09747 mmol of quinoline, 5.0 mg of Ni-bipy-COF, $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$ (2.0-5.0 equiv), 1 mL of hexane, $90^{\circ} \mathrm{C}$.

entry	the equivalents of $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$	yield
1	2	85%
2	3	90%
3	4	94%
4	5	98%

Table S3. Ni-bipy-COF-catalyzed transfer hydrogenation of quinolines. Reaction conditions: 1 mmol of quinolines, 50.0 mg of Ni-bipy-COF, $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$ (5.0 equiv), 10 mL of hexane, $90^{\circ} \mathrm{C}$.

4a: 98 \%

4b: 90 \%

4c: 80 \%

4d: 70 \%

4e: 62 \%

4f: 71 \%

4g: 73 \%

4h: 72 \%

4i: 63 \%

4j: 65 \%

4k: 77 \%

4I: 95 \%

Table S4. The yields of 1, 2, 3, 4-tetrahydroquinoline catalyzed by Ni-bipy-COF for 5 reaction cycles. Reaction conditions: 1 mmol of quinoline, 50.0 mg of Ni-bipy-COF, $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$ (5.0 equiv), 10 mL of hexane, $90^{\circ} \mathrm{C}$.

		Ni-bipy-COF, $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$			
		n-hexane, $90^{\circ} \mathrm{C}, 2 \mathrm{~h}$			
cycle	1	2	3	4	5
yield	95	93	94	92	90

Table S5. The gram scale reaction and yields of 1, 2, 3, 4-tetrahydroquinoline for 5 reaction cycles. Reaction conditions: 1.0 g of quinolines (7.7 mmol), 387 mg of $\mathrm{Ni}-$ bipy-COF, $\mathrm{NH}_{3} \cdot \mathrm{BH}_{3}$ (5.0 equiv), 77 mL of hexane, $90^{\circ} \mathrm{C}$, in a 350 mL sealed glass tube.

Table S6. Elemental analysis of bipy-COF.

		$\mathrm{C}(\%)$	$\mathrm{H}(\%)$	$\mathrm{N}(\%)$
bipy-COF	Calcd.	83.01	4.49	12.49
	Found	82.96	4.59	12.35

Table S7. Atomistic coordinates for the AA-stacking mode of Ni-bipy-COF optimized using DFTB+ method. Space group: P6; $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$, $\mathrm{a}=35.1635 \AA, \mathrm{~b}=$ $35.1635 \AA, \mathrm{c}=3.445827 \AA$.

C1	C	0.34446	0.71557	$1 / 2$	1	0
C2	C	0.33735	0.67181	$1 / 2$	1	0
C3	C	0.37288	0.66324	$1 / 2$	1	0
C4	C	0.41697	0.69769	$1 / 2$	1	0
C5	C	0.42395	0.74110	$1 / 2$	1	0
C6	C	0.38909	0.74958	$1 / 2$	1	0
N7	N	0.45326	0.68805	$1 / 2$	1	0
C8	C	0.49478	0.71902	$1 / 2$	1	0
C9	C	0.30686	0.72636	$1 / 2$	1	0
C10	C	0.26171	0.69301	$1 / 2$	1	0
C11	C	0.22684	0.70283	$1 / 2$	1	0
C12	C	0.23900	0.74792	$1 / 2$	1	0
C13	C	0.28318	0.78273	$1 / 2$	1	0
C14	C	0.31613	0.77077	$1 / 2$	1	0
C15	C	0.29476	0.83129	$1 / 2$	1	0
C16	C	0.17793	$2 / 3$	$1 / 2$	1	0
C17	C	0.26154	0.84317	$1 / 2$	1	0
C18	C	0.27159	0.88717	$1 / 2$	1	0
C19	C	0.31559	0.92214	$1 / 2$	1	0
C20	C	0.34895	0.91123	$1 / 2$	1	0
C21	C	0.33900	0.86700	$1 / 2$	1	0
C22	C	0.16464	0.62133	$1 / 2$	1	0
C23	C	0.11995	0.58837	$1 / 2$	1	0
C24	C	0.08606	0.59915	$1 / 2$	1	0
C25	C	0.09859	0.64373	$1 / 2$	1	0
C26	C	0.14317	0.67677	$1 / 2$	1	0
N27	N	0.32756	0.96838	$1 / 2$	1	0
C28	C	0.29941	0.98249	$1 / 2$	1	0
N29	N	0.03924	0.56653	$1 / 2$	1	0
C30	C	0.02298	0.52397	$1 / 2$	1	0
C31	C	0.53503	0.71437	$1 / 2$	1	0

N32	N	0.53610	0.67538	$1 / 2$	1	0
C 33	C	0.57619	0.67645	$1 / 2$	1	0
C34	C	0.61570	0.71731	$1 / 2$	1	0
C35	C	0.61492	0.75624	$1 / 2$	1	0
C36	C	0.57496	0.75495	$1 / 2$	1	0
C37	C	0.58283	0.63749	$1 / 2$	1	0
N38	N	0.55254	0.59590	$1 / 2$	1	0
C39	C	0.56257	0.56003	$1 / 2$	1	0
C40	C	0.60603	0.56695	$1 / 2$	1	0
C41	C	0.61427	0.53174	$1 / 2$	1	0
C42	C	0.57984	0.48734	$1 / 2$	1	0
C43	C	0.53622	0.48074	$1 / 2$	1	0
C44	C	0.52803	0.51628	$1 / 2$	1	0
C45	C	0.58955	0.44906	$1 / 2$	1	0
C46	C	0.63336	0.45632	$1 / 2$	1	0
C47	C	0.64285	0.42143	$1 / 2$	1	0
C48	C	0.60625	0.37791	$1 / 2$	1	0
C49	C	0.56200	0.36831	$1 / 2$	1	0
C50	C	0.55488	0.40471	$1 / 2$	1	0
C51	C	0.69044	0.42989	$1 / 2$	1	0
C52	C	0.69909	0.39440	$1 / 2$	1	0
C53	C	0.74191	0.40133	$1 / 2$	1	0
C54	C	0.77856	0.44359	$1 / 2$	1	0
C55	C	0.77172	0.47979	$1 / 2$	1	0
C56	C	0.72833	0.47306	$1 / 2$	1	0
C57	C	0.52349	0.32055	$1 / 2$	1	0
C58	C	0.52988	0.28336	$1 / 2$	1	0
C59	C	0.49417	0.23978	$1 / 2$	1	0
C60	C	0.45076	0.23171	$1 / 2$	1	0
C61	C	0.44382	0.26760	$1 / 2$	1	0
C62	C	0.47904	0.31092	$1 / 2$	1	0
N63	N	0.41231	0.18834	$1 / 2$	1	0
N64	N	0.82112	0.44651	$1 / 2$	1	0
C65	C	0.86156	0.47952	$1 / 2$	1	0
C66	C	0.89817	0.46913	$1 / 2$	1	0
C67	C	0.40830	0.14924	$1 / 2$	1	0
C68	C	0.36306	0.10984	$1 / 2$	1	0
C69	C	0.32650	0.11644	$1 / 2$	1	0
C70	C	0.28372	0.08096	$1 / 2$	1	0
C71	C	0.27632	0.03815	$1 / 2$	1	0
C74	C	0.31161	0.02976	$1 / 2$	1	0
	C	0.35542	0.06596	$1 / 2$	1	0
		0.88716	0.42449	$1 / 2$	1	0

C75	C	0.92004	0.41345	1/2	1	0
C76	C	0.96388	0.44645	1/2	1	0
C77	C	0.97502	0.49092	1/2	1	0
N78	N	0.94202	0.50147	1/2	1	0
H79	H	0.30463	0.64346	1/2	1	0
H80	H	0.36584	0.62940	1/2	1	0
H81	H	0.45609	0.77013	1/2	1	0
H82	H	0.39921	0.78401	1/2	1	0
H83	H	0.50288	0.75285	1/2	1	0
H84	H	0.25390	0.65936	1/2	1	0
H85	H	0.21368	0.75603	1/2	1	0
H86	H	0.34931	0.79673	1/2	1	0
H87	H	0.22690	0.81941	1/2	1	0
H88	H	0.24388	0.89258	1/2	1	0
H89	H	0.38314	0.93730	1/2	1	0
H90	H	0.36705	0.86221	1/2	1	0
H91	H	0.18806	0.60994	1/2	1	0
H92	H	0.11298	0.55470	1/2	1	0
H93	H	0.07344	0.65314	1/2	1	0
H94	H	0.14872	0.70984	1/2	1	0
H95	H	0.26451	0.95934	1/2	1	0
H96	H	0.04478	0.51055	1/2	1	0
H97	H	0.64764	0.71935	1/2	1	0
H98	H	0.64544	0.78756	1/2	1	0
H99	H	0.57551	0.78619	1/2	1	0
H100	H	0.61695	0.64631	1/2	1	0
H101	H	0.63493	0.59924	1/2	1	0
H102	H	0.64851	0.54090	1/2	1	0
H103	H	0.50731	0.44849	1/2	1	0
H104	H	0.49426	0.50950	1/2	1	0
H105	H	0.66044	0.48922	1/2	1	0
H106	H	0.61197	0.35093	1/2	1	0
H107	H	0.52199	0.39860	1/2	1	0
H108	H	0.67375	0.36032	1/2	1	0
H109	H	0.74662	0.37299	1/2	1	0
H110	H	0.79952	0.51307	1/2	1	0
H111	H	0.72559	0.50235	1/2	1	0
H112	H	0.56203	0.28648	1/2	1	0
H113	H	0.50080	0.21274	1/2	1	0
H114	H	0.41042	0.26191	1/2	1	0
H115	H	0.46977	0.33591	1/2	1	0
H116	H	0.86849	0.51330	1/2	1	0
H117	H	0.43696	0.14516	1/2	1	0

H118	H	0.33075	0.14928	$1 / 2$	1	0
H119	H	0.25606	0.08669	$1 / 2$	1	0
H120	H	0.24248	0.01126	$1 / 2$	1	0
H121	H	0.38304	0.06016	$1 / 2$	1	0
H122	H	0.85321	0.39792	$1 / 2$	1	0
H123	H	0.91150	0.37916	$1 / 2$	1	0
H124	H	0.98912	0.43716	$1 / 2$	1	0

Section E. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of THQs

1,2,3,4-tetrahydroquinoline (4a): Yellow oil; 98% yield; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98((\mathrm{ddd}, J=14.5,7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.63((\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.49 (dd, $J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~ms}, 1 \mathrm{H}), 3.33-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.82,129.55,126.76$, 121.48, 116.97, 114.22, 42.02, 27.01, 22.22.

6-methyl-1,2,3,4-tetrahydroquinoline (4b): Yellow solid; 90% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.47-6.38(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.21(\mathrm{~m}$, $2 \mathrm{H}), 2.74(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.48,130.14,127.31,126.33,121.68,114.53,42.25,26.97,22.50,20.47$.

MeO

H 6-methoxy-1,2,3,4-tetrahydroquinoline (4c): Yellow solid; 80% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59(\mathrm{dt}, J=8.8,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.89(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.86,138.92,122.92,115.61,114.92,112.94,55.85,42.38$, 27.21, 22.48.

1,2,3,4-tetrahydroquinoline-6-carbonitrile (4d): Yellow oil; 70\% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H})$, $3.55-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-1.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta 148.27,133.28,131.33,120.99,120.89,113.29,97.78,41.63,26.77,21.01$.

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12-7.69(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.15(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~ms}, 1 \mathrm{H}), 3.41$ $(\mathrm{td}, J=5.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{dt}, J=12.2,6.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.49,137.21,125.96,124.34,119.88,112.20,41.78$, 26.93, 20.85.

6-fluoro-1,2,3,4-tetrahydroquinoline (4f): Yellow oil; 71\% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{dd}, J=9.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}$,
$1 \mathrm{H})$, 3.33-3.19 (m, 2H), $2.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03-1.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.46(\mathrm{~d}, J=233.0 \mathrm{~Hz}), 140.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 122.80(\mathrm{~d}, J=7.0 \mathrm{~Hz})$, $115.63(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 114.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 113.20(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 42.10,27.05$ (d, $J=2.0 \mathrm{~Hz}$), 22.01.

H 6-chloro-1,2,3,4-tetrahydroquinoline (4g): Yellow solid; 73\% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.05-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 1 \mathrm{H})$, $3.28(\mathrm{dd}, J=6.9,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{ddd}, J=11.7,8.7,6.4 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.34,129.05,126.53,122.90,121.15,115.12$, 41.88, 26.90, 21.77.

H 6-bromo-1,2,3,4-tetrahydroquinoline (4h): Yellow oil; 72\% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.03(\mathrm{dt}, J=8.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ $(\mathrm{ms}, 1 \mathrm{H}), 3.46-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.07-1.80(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 143.79,131.92,129.42,123.44,115.57,108.25,41.85,26.89$, 21.74.

methyl-1,2,3,4-tetrahydroquinoline-6-carboxylate (4i): White solid; 63% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.55(\mathrm{~m}, 2 \mathrm{H}), 6.45-6.32(\mathrm{~m}, 1 \mathrm{H}), 4.35$ $(\mathrm{ms}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.83(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.59,148.84,131.34,129.15,119.93,117.42,112.66$, 51.48, 41.74, 26.94, 21.44.

1,2,3,4-tetrahydroquinoline-6-carboxylic acid (4j): Yellow solid; 65% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.64(\mathrm{~m}, 2 \mathrm{H}), 6.47-6.31(\mathrm{~m}, 1 \mathrm{H}), 3.49-$ $3.19(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{td}, J=11.4,6.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.63,149.54,132.08,130.02,119.97,116.48,112.69,41.80,26.94$, 21.39.

7-nitro-1,2,3,4-tetrahydroquinoline (4k): Yellow solid; 77\% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~ms}, 1 \mathrm{H}), 3.49-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12-1.83$
(m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 147.30, 145.21, 129.76, 128.35, 111.32, 107.84, 41.59, 27.31, 21.14.

H 1,2,3,4-tetrahydroquinoxaline (41): Yellow brown solid; 95% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.61-6.57(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.48(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.74,118.83,114.78,41.45$.

BH_{3} quinoline-borane intermediate: Wite solid; 50% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.17(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.95-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=3.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-2.64$ (m,

Section F. Copies of NMR Spectra

Section G. Supporting References

[S1] C. R. Deblase, K. E. Silberstein, T. -T. Truong, H. D. Abruňa,W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 16821-16824.
[S2] M. Matsumoto, R. R. Dasari, W. Ji, C. H. Feriante, T. C. Parker, S. R. Marder, W. R. Dchtel, J. Am. Chem. Soc. 2017, 139, 4999-5002.
[S3]E. Vitaku, W. R. Dichtel, J. Am. Chem. Soc. 2017, 139, 12911-12914.

