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Figure S1. Illustrations of the interstitial sites that have been proposed in La9.33+x(SiO4)6O26+1.5x including symmetry 
equivalents. Three main areas can be identified: near the SiO4 groups coloured grey, between two SiO4 groups coloured 
pink and within the O4 channel coloured orange.

Figure S2. Rietveld refinement of crushed crystals of La9.64Si5.77O26. Rwp = 8.898%, GOF = 2.27.
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Figure S3. SEM micrographs of the polished LSO crystal. The gold paste used to prevent charge build-up is visible in 
the top right and bottom left corners. The micrographs in circles show progressively smaller length scales to show the 
homogeneity of the crystal. The lighter-coloured flecks result from the carbon coating and the straight lines from the 
polishing treatment.

Figure S4. a) A histogram of the La:Si ratios measured by SEM-EDX, using 225 spectra from 5 different sites on a 
polished crystal of LSO, fitted with the red gaussian distribution. b) Compounds related to LSO expressed as Si and La 
mole fractions. The experimental mole fractions of LSO calculated from the histogram in a) are shown with blue shading. 
The nominal mole fractions of related compositions are marked on the graph for comparison.

The Gaussian fit to the histogram gives a mean La/Si ratio of 1.684(2) and a standard deviation of 0.026. 
This corresponds to La9.67Si5.74O26, when normalised to O26. To give an idea of the precision of this EDX 
technique, one standard deviation away from the mean in either direction corresponds to ratios of 1.710 
and 1.658, which give the compositions La9.73Si5.75O26 and La9.61Si5.79O26, respectively. There is an 
approximate <1% difference in the Si content between the latter two compositions.

Specific gravity measurements
Due to the effects of buoyancy, crystals weigh less in ethanol than in air and the specific gravity can be 
calculated using

𝐺𝑐𝑟𝑦𝑠𝑡𝑎𝑙 =  
𝑚𝑎𝑖𝑟

𝑚𝑎𝑖𝑟 ‒ 𝑚𝐸𝑡𝑂𝐻
  𝐺𝐸𝑡𝑂𝐻, Eq. S1



where m is the mass and G is the specific gravity (0.7893 g cm-3 for ethanol at 20 °C). The density of the 
crystal is then Gcrystal × ρwater, where ρwater is the density of water. A simple apparatus to allow density 
measurements was mounted on a 4-decimal-place balance, as described by Brandriss1. The experimental 
uncertainty was quantified by measuring the specific gravity of four materials with known density: quartz 
glass pieces, silicon wafers, and agate and zirconia milling balls; a summary of the standard measurements 
is given in Table S1. For quartz and silicon, the known density corresponds to the theoretical density, and 
for the milling balls, the density was measured using their mass and volume. For each material, between 6 
and 15 different samples were measured. This confirmed the accuracy of the experiment and defined a 
typical standard deviation of 0.02 g cm-3

. The primary source of error is the precision of the balance, and 
scales as 1/mass of the crystal. Test measurements determined that the crystal must weigh more than 0.05 
g to produce a meaningful measured density value. The specific gravities of four different pieces of the LSO 
(with masses 0.2878, 0.1660, 0.0897 and 0.0755 g) were each measured 20 times to provide an average 
density for the crystals. 

Table S1. Comparison between the measured and known densities standard samples.

Standard ρknown / g cm-3 ρmeasured / g cm-3

Agate bead 2.60 2.585(3)
ZrO2 bead 6.05 6.066(3)
Si wafer 2.33 2.33(1)
Quartz glass 2.20 2.191(4)

Point
La 
content

Density 
/ g cm-3

Si 
content

O 
content

1 9.615 5.410 5.789 26
2 9.640 5.418 5.770 26
3 9.675 5.430 5.744 26
4 9.651 5.430 5.820 26.12
5 9.642 5.410 5.726 25.91

Figure S5. Zoom of Figure 2 in the main text showing the estimate of the final composition (point 2) and the upper and 
lower bounds of composition assuming oxygen stoichiometry (points 1 and 2). Shaded regions represent one standard 



deviation away from the mean for the measured density (pink) and calculated density using LaxSix/1.684O[3x+4(x/1.684)]/2. 
The dotted line indicates oxygen stoichiometric compositions, i.e. LaxSi(52-3x)/4O26.

Figure S6. a) The crystal used for neutron diffraction measurement and b) example diffraction planes reconstructed 
from the neutron diffraction data collected on LSO at 40 K. Significant diffuse scatter is seen between the Bragg 
peaks.



Figure S7. Final refined room temperature structure with ellipsoids drawn at 50% probability.

Table S2. Summary of single crystal neutron refinements for LSO at 40 and 295 K.

Temperature 40K 295K
Space group P63 P63
a / Å 9.7027(17) 9.7133(17)
c / Å 7.1793(16) 7.1843(18)
V / Å3 585.33(16) 587.01(17)
# Reflections

all 20874 10449
Observed (>3σ) 15339 7385
Excluded (|Fobs-Fcalc| > 10σ) 779 366

R / % 7.72 6.92
wR / % 6.81 6.23



Table S3. Refined structural parameters for La9.64Si5.77O26.

Site Occ. x y z Uiso / Å2 U11 / Å2 U22 / Å2 U33 / Å2 U12 / Å2 U23 / Å2 U13 / Å2

295K
La1_1  2b 0.841(6)  0.3333  0.6667 0.0118(2)  0.0112(5)  0.0106(7)  0.0106(7)  0.0123(6)  0.0053(4)  0 0
La1_2 2b 0.979(6)  0.6667  0.3333  0.0140(1)  0.0133(5)  0.0054(6)  0.0054(6)  0.0292(8)  0.0027(3)  0 0
La2 6c 1  0.22725(5)  -0.01205(4)  0.2639(2)  0.0086(1) 0.0010(1) 0.0062(1)  0.0092(1)  0.0037(1)  -0.0001(4)  0.0007(4)
Si1  6c  0.9617  0.40306(8)  0.37292(9) 0.2652(3) 0.0047(2)  0.0053(3)  0.0051(3)  0.0044(1) 0.0037(2) -0.0017(7) -0.0030(7)
O1  6c 1 0.32472(9) 0.48604(9) 0.2601(3) 0.0170(3) 0.0246(4)  0.0222(4)  0.0152(2) 0.0199(3)  0.0109(5) 0.0123(5)
O2 6c  1 0.59592(7)  0.47326(7)  0.2585(3)  0.0144(2)  0.0091(3)  0.0096(3)  0.0208(2)  0.0019(2)  -0.0006(7)  0.0048(7)
O3_1  6c  1 0.3495(3)  0.2579(2)  0.0773(2)  0.0238(6)  0.0487(11)  0.0209(6)  0.0089(3)  0.0228(7) -0.0142(4) -0.0088(3)
O3_2 6c 0.312(4)  0.3024(4)  0.2469(4)  0.4178(4)  0.0053(2)
O3_2'  6c 0.688(4)  0.3559(2)  0.2581(2) 0.4446(2)  0.0053(2)
O4   2a 0.4577(4)  0 0 0.2504(5)  0.0149(5)
O4' 2a  0.349(4)  0 0 0.3218(7)  0.0149(5)
O4''    2a 0.193(4) 0 0 0.1408(10)  0.0149(5)
40K
La1_1  2b 0.856(3)  0.3333  0.6667  0.0004(2)  0.0079(3) 0.0063(3) 0.0063(3) 0.0110(4) 0.0031(2) 0 0
La1_2 2b 0.964(3)  0.6667 0.3333  0.0030(1) 0.0098(2)   0.0027(3) 0.0027(3) 0.0241(5) 0.0013(1) 0 0
La2  6c 1 0.22732(3) -0.01214(3) 0.2500(2) 0.00628(8) 0.00298(8) 0.00533(6)  0.00556(6) 0.00145(7) 0.0009(2) -0.0009(2)
Si1    6c 0.9617  0.40311(5)  0.37280(5) 0.2496(3) 0.0036(1) 0.0052(1) 0.0040(1) 0.0027(1) 0.0031(1) 0.0001(4) 0.0006(4)
O1 6c 1 0.32482(6) 0.48629(6) 0.2527(3) 0.0129(1)  0.0183(2) 0.0189(2) 0.0109(1)  0.0163(2) -0.0092(3) -0.0108(3)
O2     6c 1 0.59642(5)  0.47338(5) 0.2452(3) 0.0096(1) 0.0064(1) 0.0056(1) 0.0139(1) 0.0009(1) -0.0017(3) 0.0007(4)
O3_1  6c 1 0.3525(2) 0.2582(1) 0.0667(2) 0.0175(3)  0.0373(6) 0.0173(3) 0.0044(1) 0.0186(3) -0.0107(2) -0.0069(1)
O3_2  6c 0.306(4) 0.3024(2) 0.2463(2) 0.4124(3) 0.0050(3)
O3_2'  6c 0.694(4)  0.3544(1) 0.2573(2) 0.4347(3) 0.0050(2)
O4 0 2a 1 0 0 0.2399(13) 0.0674(9) 0.0099(3) 0.0099(3) 0.182(3) 0.0050(1) 0 0

Table S4. Refined bond lengths for La and Si polyhedra at 295 and 40 K. The distance between O3_2 and O3_2’ is 0.50 Å at both temperatures, and at 295 K, the distances O4–
O4’, O4–O4’’ and O4’–O4’’ are 0.51, 0.79 and 1.30 Å, respectively.

295K 40K
Bond Bond Length / Å Bond Bond Length / Å

La1_1 – O1 (x3) 2.4737 La1_1 – O1 (x3) 2.5002
La1_1 – O2 (x3) 2.5343 La1_1 – O2 (x3) 2.5590
La1_1 – O3_2’ (x3) 2.7751 La1_1 – O3_2’ (x3) 2.7753
La1_1 – O3_2 (x3) 3.2622 La1_1 – O3_2 (x3) 3.2694
La1_2 – O1 (x3) 2.5035 La1_2 – O1 (x3) 2.4720
La1_2 – O2 (x3) 2.5470 La1_2 – O2 (x3) 2.5107
La1_2 – O3_1 (x3) 2.8023 La1_2 – O3_1 (x3) 2.7969
La2 – O4 2.2701 La2 – O4 2.2693
La2 – O4’ 2.3059 La2 – O3_2’ 2.4749
La2 – O4’’ 2.4344 La2 – O3_1 2.4769



La2 – O3_2’ 2.4713 La2 – O3_2 2.4966
La2 – O3_1 2.4857 La2 – O3_2 2.5154
La2 – O3_2 2.5030 La2 – O2 2.5191
La2 – O3_2 2.5124 La2 – O3_2’ 2.6250
La2 – O2 2.5221 La2 – O3_1 2.6271
La2 – O3_1 2.6305 La2 – O1 2.7703
La2 – O3_2’ 2.6328 Si – O3_2 1.6122
La2 – O1 2.7729 Si – O1 1.6207
Si – O3_2 1.6022 Si – O2 1.6251
Si – O1 1.6197 Si – O3_1 1.6294
Si – O2 1.6231 Si – O3_2’ 1.6480
Si – O3_1 1.6321
Si – O3_2’ 1.6443



Figure S8. a) The large box model used to simulate diffuse scattering folded back down into a single unit cell. The 
green, blue and red spheres shows the average positions of La, Si and O, respectively, and the grey clouds encompass 
the positions of all the atoms in the supercell. b) Selected experimental and simulated diffuse scattering h k l sections. 
Calculated patterns are indicated with a white circle and the dividing line between calculated and experimental patterns 
is shown by a red dashed line. Intensities of the calculated patterns are arbitrary and are coloured to match the 
experimental patterns.

Figure S9. a) Breathing distortions around Si (blue circle) and La vacancies (green circle); note that the arrows are 
not to scale. b) The resulting calculated diffuse scattering and corresponding experimental sections.

Modelling O4 displacement correlations

O4 atoms were distributed across the three sites identified from the RT refinement, as shown in Figure 
S10a, with the central atom at fractional coordinates (0, 0, 0.25) and the other two shifted up or down along 
the c-axis to (0, 0, 0.35) and (0, 0, 0.15). The occupancies of these three sites from the structure refinement 
suggest that the central position is occupied ~50% of the time. For simplicity in this model, the remaining 
50% of atoms was distributed over the upper and lower sites equally. 

An Ising-like energy function can be employed to allow different correlations in the O4 positions to be 
created. The three sites were assigned a pseudo-spin value of -1, 0 and 1 for lower, central and upper sites, 
respectively. A Monte Carlo ordering algorithm was written to swap O4 atoms with different spins and 
calculate the energies of the two configurations according to  



𝐸𝑖 =
𝑛

∑
𝑗 = 1

‒ 𝑘𝑖𝑗𝜎𝑖𝜎𝑗 Eq. S2

where Ei is the energy of atom i, kij is the force constant between O4 atom i and its O4 neighbour j, σi is the 
assigned spin of atom i and n is the number of neighbours of atom i. To clarify, for this section of the 
modelling, the neighbours of atom i refer to its neighbouring O4 atoms even though they are nominally non-
bonded. Each O4 has eight neighbours: six in the ab-plane, one above it, and one below. The starting force 
constant matrix was defined arbitrarily to make like spins have a weak interaction, opposite spins have a 
strong interaction, and spins of 0 to have no interactions. This definition was found by trial and error to give 
the desired ordering patterns. 

A correlation between spins can be used to quantify the ordering patterns produced by the algorithm. 
After each MC cycle, the correlation is calculated by

corr =  
∑𝜎𝑖𝜎𝑗

𝑛
Eq. S3

For like spins, σiσj = 1, so if atom i is completely surrounded by like spins, corr = 1. If all the spins are 
opposing, corr = -1. A correlation can, therefore, be specified to define the type of ordering desired. The 
force constants are then scaled by the difference between the calculated and desired correlation value at 
the end of each MC cycle. Using this method, the O4 positions can be correlated separately in the ab-plane 
and along the c-axis with the sum in Equation S2 running over the two neighbours above and below the 
plane, or the six neighbours in the ab-plane, respectively. Example configurations are given in Figures S10b 
and S10c, where yellow, red and blue spheres represent O4 atoms in the lower, central and upper positions 
from Figure S10a. The configuration in S10b has a correlation of 0.35 parallel to the c-axis and 0.0 in the 
ab-plane, so like spins are clustered along the c-axis and are randomly distributed in the ab-plane. Note 
that a correlation significantly higher than 0.35 is not possible in this model as the three different spins 
necessitate that some neighbour interactions are not between like spins, so the overall correlation 
decreases. In the final model, these correlations translate to O4 atoms with the same vertical displacement 
being clustered together along c, approximating the correlated displacements that would result from 
electrostatics in a real material. The corresponding anti-correlation, where adjacent O4s prefer to be 
displaced in opposite directions, would model the effects of elastic strain in the LSO crystal.

Figure S10. a) Modelling of the disorder on the O4 site. For each O4 in the supercell, the atom was place on one of the 
positions indicated by the coloured spheres with 50% on the central position and 25% on the other two. b, c) Example 
configurations of the supercell showing only the O4 atoms to show the different ordering patterns produced. The colours 
correspond to the positions in a.



Figure S11. Diffuse scattering patterns produced by different correlations of O4 positions and the corresponding 
experimental patterns.
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