Electronic Supporting Information (ESI)

Supported Cu₃ Cluster on Graphitic Carbon Nitride as an Efficient Catalyst for

CO Electroreduction to Propene

Yuting Sun,^a Shuang Wang,^a Jingjing Jia,^a Yuejie Liu,^{b,*} Qinghai Cai,^{a,c} Jingxiang Zhao^{a,*}

^a College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China

^b Modern Experiment Center, Harbin Normal University, Harbin, 150025, China ^c Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China

^{*}To whom correspondence should be addressed. Email: zjx1103@hotmail.com (YL); xjz_hmily@163.com or zhaojingxiang@hrbnu.edu.cn (JZ)

Computational Details of Dissolution Potential

To evaluate the stability of $Cu_3@g-C_3N_4$ monolayer in strong acidic media, we computed the dissolution potentials $(U_{diss}, in V)$ of Cu in $Cu_3@g-C_3N_4$ at pH = 0, which was defined as: $U_{diss} = U_{Cu}^0 + [E_{Cu,bulk} - (E_{Cu_3@g-C_3N_4} - E_{d-Cu_3@g-C_3N_4})]/ne$, where U_{Cu}^0 is the standard dissolution potential of Cu in the bulk form, d-Cu_3@g-C_3N_4 is the defective $Cu_3@g-C_3N_4$ monolayer by dissolving (removing) one Cu to solutions and *n* is the coefficient for the aqueous dissolution reaction: $Cu + 2H^+ \leftrightarrow Cu^{2+} + H_2$, namely, *n* equals to 2.

 $g-C_3N_4$. Q(|e|) $d_{\text{Cu-N}}$ E_{bind} Cu_1 (Å) Cu_2 Cu₃ Cu_4 Cu₅ Cu_6 total (eV) $Cu_1@g-C_3N_4$ 0.74 0.74 2.18 -4.55 - $Cu_2@g-C_3N_4$ 0.41 0.44 0.85 1.95 -4.01 _____ -0.94 -6.16 $Cu_3@g-C_3N_4$ 0.31 0.31 0.31 2.03 $Cu_4@g-C_3N_4$ 0.40 0.42 0.41 -0.03 1.20 2.00 -7.86 _____ ____ $Cu_5@g-C_3N_4$ 0.36 0.41 0.43 -0.10 0.02 1.12 2.00 -6.62 ____ $Cu_6@g-C_3N_4$ 0.41 0.42 -0.04 -0.03 2.01 -6.28 0.41 -0.05 0.65

Table S1. The computed binding energies (E_{bind}), shortest distances between Cu clusters and g-C₃N₄, and the charges (Q) for various Cu_n (n=1-6) clusters anchored on

Table S2. The computed free energy changes (ΔG , eV) of each possible elementary step for COER to generate CH₄ product on Cu₃@g-C₃N₄. The red represents higher selectivity.

Elementary step	Free energy change (ΔG)
$CO(g) + * \rightarrow CO^*$	-0.98
$\mathrm{CO}^* + \mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{CHO}^*$	0.45
$\mathrm{CO}^* + \mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{COH}^*$	1.12
$\mathrm{CHO}^* + \mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{CH}_2\mathrm{O}^*$	0.03
$\text{CHO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CHOH}^*$	0.45
$\mathrm{CH}_{2}\mathrm{O}^{*} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3}\mathrm{O}^{*}$	-0.63
$\mathrm{CH}_2\mathrm{O}^* + \mathrm{H}^+ + \mathrm{e}^- \rightarrow \mathrm{CH}_2\mathrm{OH}^*$	-0.55
$\mathrm{CH}_{3}\mathrm{O}^{*} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{O}^{*} + \mathrm{CH}_{4}(\mathrm{g})$	-0.81
$\mathrm{CH}_{3}\mathrm{O}^{*} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3}\mathrm{OH}^{*}$	0.76
$O^* + H^+ + e^- \rightarrow OH^*$	-0.33
$OH^* + H^+ + e^- \rightarrow * + H_2O$	0.37

Table S3. The computed free energy changes (ΔG , eV) of each possible elementary step for COER to generate C₃ product on Cu₃@g-C₃N₄. The red represents higher selectivity.

Elementary step	Free energy change (ΔG)
$3CO(g) + * \rightarrow CO-CO-CO^*$	-0.81
$\text{CO-CO-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CO-COH-CO}^*$	-0.55
$\text{CO-CO-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CO-HCO-CO}^*$	0.18
$\text{CO-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CO-C-CO}^* + \text{H}_2\text{O}$	-0.14
$\text{CO-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{COH-COH-CO}^*$	0.03
$\text{CO-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CHO-COH-CO}^*$	0.31
$\text{CO-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CO-HCOH-CO}^*$	0.60
$\text{CO-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CO-COH-COH}^*$	0.05
$\text{CO-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CO-COH-CHO}^*$	0.33
$\text{CO-C-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-CO-CO}^*$	-0.52
$\text{CO-C-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CHO-C-CO}^*$	-0.44
$\text{CO-C-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{COH-C-CO}^*$	0.25
$\text{CO-C-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CO-C-COH}^*$	0.12
$\text{CO-C-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CO-C-CHO}^*$	-0.31
$\text{CH-CO-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-COH-CO}^*$	-0.18
$\text{CH-CO-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH}_2\text{-CO-CO}^*$	0.02
$\text{CH-CO-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-CHO-CO}^*$	0.07
$\text{CH-CO-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-CO-CHO}^*$	0.27
$\text{CH-CO-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-CO-COH}^*$	0.18
$\text{CH-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-COH-CHO}^*$	-0.20
$\text{CH-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH}_2\text{-COH-CO}^*$	-0.06
$\text{CH-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-C-CO}^* + \text{H}_2\text{O}$	0.25
$\text{CH-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-HCOH-CO}^*$	0.77
$\text{CH-COH-CO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-COH-COH}^*$	-0.02
$CH-COH-CHO^* + H^+ + e^- \rightarrow CH-C-CHO^* + H_2O$	-0.10
$\text{CH-COH-CHO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH}_2\text{-COH-CHO}^*$	0.50
$\text{CH-COH-CHO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-HCOH-CHO}^*$	1.11
$\text{CH-COH-CHO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-COH-CHOH}^*$	0.44
$\text{CH-COH-CHO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-COH-CH}_2\text{O}^*$	1.15
$\mathbf{CH}\text{-}\mathbf{C}\text{-}\mathbf{C}\mathbf{H}\mathbf{O}^* + \mathbf{H}^+ + \mathbf{e}^- \rightarrow \mathbf{CH}_2\text{-}\mathbf{C}\text{-}\mathbf{C}\mathbf{H}\mathbf{O}^*$	-0.12

$\text{CH-C-CHO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-CH-CHO}^*$	0.09
$\text{CH-C-CHO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-C-CHOH}^*$	0.11
$\text{CH-C-CHO}^* + \text{H}^+ + \text{e}^- \rightarrow \text{CH-C-CH}_2\text{O}^*$	1.12
CH_2 -C- $CHO^* + H^+ + e^- \rightarrow CH_3$ -C- CHO^*	-0.34
CH_2 -C-CHO [*] + H ⁺ + e ⁻ \rightarrow CH ₂ -CH-CHO [*]	-0.15
CH_2 -C- $CHO^* + H^+ + e^- \rightarrow CH_2$ -C- $CHOH^*$	0.06
CH_2 -C- $CHO^* + H^+ + e^- \rightarrow CH_2$ -C- CH_2O^*	-0.09
CH_3 -C-CHO [*] + H ⁺ + e ⁻ \rightarrow CH ₃ -C-CHOH [*]	-0.09
CH_3 -C- $CHO^* + H^+ + e^- \rightarrow CH_3$ - CH - CHO^*	0.17
CH_3 -C- $CHO^* + H^+ + e^- \rightarrow CH_3$ -C- CH_2O^*	0.61
$CH_3-C-CHOH^* + H^+ + e^- \rightarrow CH_3-C-CH^* + H_2O$	-0.66
CH_3 -C-CHOH [*] + H ⁺ + e ⁻ \rightarrow CH ₃ -CH-CHOH [*]	0.25
CH_3 -C- $CHOH^* + H^+ + e^- \rightarrow CH_3$ -C- CH_2OH^*	0.42
CH_3 - C - CH^* + H^+ + $e^ \rightarrow$ CH_3 - CH - CH^*	-0.51
CH_3 -C- $CH^* + H^+ + e^- \rightarrow CH_3$ -C- CH_2^*	-0.36
CH_3 - CH - $CH^* + H^+ + e^- \rightarrow CH_3$ - CH - CH_2^*	0.40
CH_3 - CH - $CH^* + H^+ + e^- \rightarrow CH_3$ - CH_2 - CH^*	0.51
CH_3 - CH - $CH_2^* \rightarrow CH_3$ - CH - $CH_2 + *$	0.48

Fig. S1. The computed band structure for (a) the pristine $g-C_3N_4$, (b) $Cu_1@g-C_3N_4$, (c) $Cu_2@g-C_3N_4$, (d) $Cu_3@g-C_3N_4$, (e) $Cu_4@g-C_3N_4$, (f) $Cu_5@g-C_3N_4$ and (g) $Cu_6@g-C_3N_4$. The Fermi level was set to zero in dotted line.

Fig. S2. Variations of temperature and energy as a function of the time for AIMD simulations of $Cu_3@g-C_3N_4$; insert is top view of the snapshot of atomic configuration. The simulation is run under 500 K for 20 ps with a time step of 2 fs. Gray, blue and orange spheres represent the C, N and Cu atoms, respectively.

Fig. S3. (a) The projected density of states (PDOSs) between Cu-3d and N-2p orbitals for $Cu_n@g-C_3N_4$ (n = 1~6) monolayer, and the Fermi level was set to zero in dotted line. (b) Charge density differences of $Cu_n@g-C_3N_4$ (n = 1~6). The cyan and yellow regions refer to electron depletion regions and accumulation. The isosurface values were set as 0.003 eV Å⁻³.

Fig. S4. The optimized most stable configurations for the adsorption of CO molecule on $Cu_n@g-C_3N_4$ (n = 1-2 and 4-6). The gray, blue, orange and red balls represent C, N, Cu and O atoms, respectively.

Fig. S5. Free energy diagrams for COER on $Cu_n@g-C_3N_4$ (n = 1-2 and 4-6).

Fig. S6. The minimum pathway and the corresponding atomic configurations for the transformation from α -3CO^{*} to β -3CO^{*}.

Fig. S7. The computed minimum pathways and the involved atomic configurations for (a) the coupling between CO^* and CHO^* and (b) the coupling between CO^* and CH_2O^* . The gray, blue, orange, red, and white balls represent C, N, Cu, O and H atoms, respectively.

Fig. S8. The most energetically favorable reaction pathway for COER to generate C_2 products (ethanol) on $Cu_3@g-C_3N_4$.