1 Superior energy storage properties in NaNbO₃-based ceramics via

2 synergistically optimizing domain and band structures

- 3
- 4 Weiwei Yang^{a,b,c}, Huarong Zeng^{a,b*}, Fei Yan^c, Jinfeng Lin^c, Guanglong Ge^c, Yingbo
- 5 Cao^c, Wentong Du^{a,b}, Kunyu Zhao^{a,b}, Guorong Li^{a,b}, Haijiao Xie^d and Jiwei Zhai^{c,*}
- 6 ^a Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute
- 7 of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
- 8 ^b Center of Materials Science and Optoelectronics Engineering, University of Chinese
- 9 Academy of Sciences, Beijing 100049, China
- 10 *cShanghai Key Laboratory for R&D and Application of Metallic Functional Materials,*
- 11 Functional Materials Research Laboratory, School of Materials Science and
- 12 Engineering, Tongji University, Shanghai 201804, China
- 13 ^dHangzhou Yanqu Information Technology Co. Ltd, Xihu District, Hangzhou 310003,
- 14 China
- 15
- 16
- 17

18 Corresponding authors:

- 19 Huarong Zeng. E-mail address: <u>huarongzeng@mail.sic.ac.cn</u>
- 20 Jiwei Zhai. E-mail address: apzhai@tongji.edu.cn
- 21
- 22

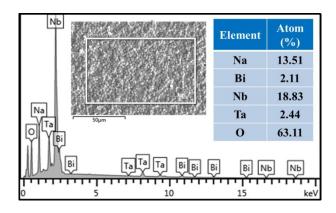
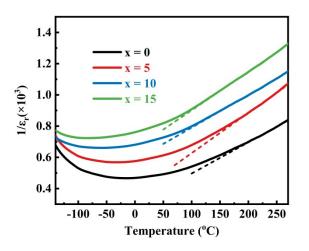
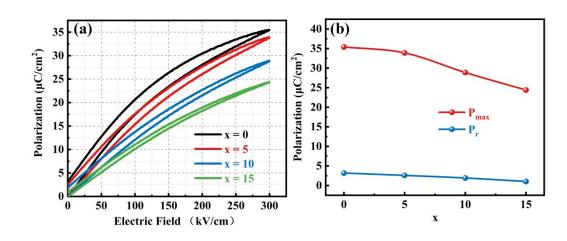
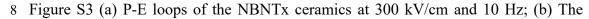



Figure S1 The EDS analysis of the NBNT10 ceramics.

3

1


2


4 Figure S2 Temperature dependence of the reciprocal of dielectric constant at 10 kHz

5 to determine the T_B values of the NBNTx ceramics.

6

7

9 change of P_{max} and P_r with the variation of Ta content.

1

2 Figure S4 Energy storage properties of the NBNT10 ceramics at different electric

3 fields.