Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Density functional theory study of two-atom active site transition-metal/iridium electrocatalyst for ammonia synthesis

Wei Song^a, Zhe Fu^e, Xiao Liu^a, Yongliang Guo^a, Chaozheng He^{b,c*}, Ling Fu^{d*}

^aSchool of Science, Henan Institute of Technology, Xinxiang, 453003, P.R. China ^bSchool of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China ^cInstitute of Environmental and Energy Catalysis, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, P. R. China ^dCollege of Resources and Environmental Engineering, Tianshui Normal University, Tianshui, 741001, P.R. China ^eDepartment of Electronic Communication Engineering, Xinxiang University,

Xinxiang, 453003, P.R. China

*Corresponding authors:

E-mail: ful263@nenu.edu.cn (L. Fu); hecz2019@xatu.edu.cn (C. He)

	$E_{\rm f}({\rm eV})$	$E_{\rm coh}({\rm eV})$	$\Delta E (eV)$
Ti ₂ @Ir(100)-para	-14.322	-6.303	-8.019
V ₂ @Ir(100)-para	-14.034	-7.287	-6.747
Cr ₂ @Ir(100)-para	-11.115	-6.753	-4.362
Mn ₂ @Ir(100)-para	-6.231	-4.462	-1.769
Fe ₂ @Ir(100)-para	-8.288	-5.609	-2.679
Co ₂ @Ir(100)-para	-9.640	-6.132	-3.508
Ni ₂ @Ir(100)-para	-9.520	-5.732	-3.788
Cu ₂ @Ir(100)-para	-6.269	-4.218	-2.051
Zn ₂ @Ir(100)-para	-2.669	-0.233	-2.436
$Ti_2@Ir(100)$ -ortho	-14.099	-6.303	-7.796
$V_2@Ir(100)$ -ortho	-13.766	-7.287	-6.479
$Cr_2@Ir(100)$ -ortho	-10.881	-6.753	-4.128
$Mn_2@Ir(100)$ -ortho	-6.191	-4.462	-1.729
Fe ₂ @Ir(100)-ortho	-8.312	-5.609	-2.703
Co ₂ @Ir(100)-ortho	-9.854	-6.132	-3.722
Ni ₂ @Ir(100)-ortho	-9.787	-5.732	-3.955
Cu ₂ @Ir(100)-ortho	-6.453	-4.218	-2.235
$Zn_2@Ir(100)$ -ortho	-2.857	-0.233	-2.624

Table S1 The formation energy (E_f in eV) of two TM (TM=Ti–Zn) atoms doped Ir(100).

S1 site	$d_{ ext{N-N}} (ext{\AA})$	$E_{\rm ads}({\rm eV})$	S2 site	$d_{\text{N-N}}(\text{\AA})$	$E_{\rm ads}({\rm eV})$
Ti			Ti	1.180	-0.765
V			V	1.182	-0.822
Cr			Cr	1.180	-1.002
Mn			Mn	1.178	-0.888
Fe			Fe	1.175	-1.398
S3 site	$d_{\text{N-N}}$ (Å)	E _{ads} (eV)	S4 site	$d_{\text{N-N}}(\text{\AA})$	$E_{\rm ads}({\rm eV})$
Ti	1.278	-1.431	Ti	1.175	-0.306
V	1.287	-1.370	V	1.172	-0.273
Cr	1.292	-1.334	Cr	1.164	-0.485
Mn	1.289	-1.270	Mn	1.135	-0.513
Fe	1.286	-1.123	Fe	1.135	-1.188
S5 site	$d_{\text{N-N}}$ (Å)	$E_{\rm ads}({\rm eV})$			
Ti	1.140	-1.201			
V	1.137	-1.143			
Cr	1.137	-1.428			
Mn	1.132	-1.332			
Fe	1.135	-1.587			

Table S2 The N–N bond length (d_{N-N} in Å) and adsorption energy (E_{ads} in eV) of N₂ on different sites of TM₂@Ir(100)-para (TM= Ti, V, Cr, Mn, and Fe).

S1 site	$d_{\text{N-N}}$ (Å)	$E_{\rm ads}({\rm eV})$	S2 site	$d_{ ext{N-N}}\left(ext{\AA} ight)$	$E_{\rm ads}~({\rm eV})$
Mn	1.242	-1.761	Mn		
Fe	1.235	-1.208	Fe	1.168	-1.514
Со	1.208	-0.498	Со	1.164	-0.742
Ni	1.218	-0.384	Ni	1.160	-0.483
Cu	1.176	-0.556	Cu	1.137	-0.066
Zn	1.176	-0.611	Zn	1.118	-0.157
S3 site	$d_{ ext{N-N}}\left(ext{\AA} ight)$	$E_{\rm ads}({\rm eV})$	S4 site	<i>d</i> _{N-N} (Å)	E _{ads} (eV)
Mn	1.176	-0.915	Mn	1.290	-1.451
Fe	1.172	-0.862	Fe	1.283	-1.282
Co	1.168	-0.484	Со	1.277	-0.764
Ni	1.167	-0.477	Ni	1.266	-0.725
Cu	1.135	-0.996	Cu	1.255	-0.319
Zn	1.135	-1.025	Zn	1.259	-0.088
S5 site	$d_{ ext{N-N}}\left(ext{\AA} ight)$	$E_{\rm ads}({\rm eV})$	S6 site	$d_{ ext{N-N}}\left(ext{\AA} ight)$	$E_{\rm ads} ({\rm eV})$
Mn			Mn	1.132	-1.386
Fe			Fe		
Co			Co		
Ni	1.263	-0.657	Ni		
Cu	1.241	-0.169	Cu		
Zn	1.240	-0.101	Zn		
S7 site	$d_{\text{N-N}}\left(\text{\AA}\right)$	$E_{\rm ads}({\rm eV})$	S8 site	$d_{ ext{N-N}}\left(ext{A} ight)$	$E_{\rm ads}~({\rm eV})$
Mn	1.131	-1.993	Mn	1.188	-1.440
Fe	1.137	-1.749	Fe	1.133	-1.886
Co	1.135	-0.972	Со		
Ni	1.130	-0.793	Ni	1.132	-0.790
Cu	1.126	-0.368	Cu	1.135	-0.996
Zn	1.118	-0.156	Zn	1.135	-1.024

Table S3 The N–N bond length (d_{N-N} in Å) and adsorption energy (E_{ads} in eV) of N₂ on different sites of TM₂@Ir(100)-ortho (TM= Mn, Fe, Co, Ni, Cu, and Zn).

Notes: "—" means that N_2 cannot be stably adsorbed at this site or has been adsorbed to other sites.

Table S4 Total magnetic moment ($(M \text{ in } \mu_{\text{B}})$	of $Mn_2(a)Ir(100)$	and $\operatorname{Fe}_2(\widehat{a},\operatorname{Ir}(100))$.
6		40 ()	20 ()

	Mn ₂ @Ir(100)-para	$Mn_2@Ir(100)$ -ortho	Fe ₂ @Ir(100)-para	Fe ₂ @Ir(100)-ortho
$M(\operatorname{in} \mu_{\mathrm{B}})$	2.927	3.423	2.699	1.162

Table S5 The adsorption energy (E_{ads} in eV), Bader charge (Q in e) and N–N bond length (d_{N-N} in Å) of N₂ on Mn₂@Ir(100)-para using DFT and DFT+U calculation, respectively.

Mn ₂ @Ir(100)-para	$E_{\rm ads}({\rm eV})$	Q (e)	$d_{ ext{N-N}} (ext{\AA})$
DFT	-1.270	1.167	1.289
DFT+U	-1.201	1.165	1.285

Fig. S1. Side and top view of N_2 adsorption on different sites of $TM_2@Ir(100)$ -para.

Fig. S2. Side and top view of N_2 adsorption on different sites of $TM_2@Ir(100)$ -ortho.

Fig. S3. The most stable structures and corresponding adsorption energy (E_{ads} in eV) as well as N–N bond length (d_{N-N} in Å) of N₂ adsorption on TM₂@Ir(100)-para (TM= Ti, V, Cr, Mn, and Fe).

Fig. S4. The most stable structures and corresponding adsorption energy (E_{ads} in eV) as well as N–N bond length (d_{N-N} in Å) of N₂ adsorption on TM₂@Ir(100)-ortho (TM= Mn, Fe, Co, Ni, Cu, and Zn).

Fig. S5. The calculated partial density of states (PDOS) of (a) $Mn_2@Ir(100)$ -para, (b) $Mn_2@Ir(100)$ -ortho, (c) $Fe_2@Ir(100)$ -para, and (d) $Fe_2@Ir(100)$ -ortho, respectively. The Fermi level is set to zero in the dotted line.

Fig. S6. The calculated density of states (DOS) of Ir(100). The Fermi level is set to zero in the dotted line.

Fig. S7. Gibbs free energy diagrams of the NRR process at zero (blue lines) and applied potential (red lines) of various reaction intermediates adsorption on (a) $Fe_2@Ir(100)$ -para and (b) $Fe_2@Ir(100)$ -ortho via the enzymatic pathway; (c) and (d) the corresponding optimized geometric structures, respectively.

Fig. S8. The temperature and energy fluctuations of $Mn_2@Ir(100)$ -para during 10ps of AIMD simulation. The insets illustrate the top and side view of $Mn_2@Ir(100)$ -para after 10ps AIMD simulation at T = 500K.

Fig. S9. The optimized adsorption structures of N_2 on $Mn_2@Ir(100)$ -para using (a) DFT and (b) DFT+U calculation.