Supporting Information

Synergistic SERS enhancement and in situ monitoring of photocatalytic reaction in plasmonic metal/ferroelectric hybrid system by light-induced pyroelectric effect

Daotong You^{a,#}, Ru Wang^{c,#}, Jiwei Xie^a, Lei Liu^a, Kaiwei Li^a, Xile Han^a, Tuan Guo^{a,*} and

Chunxiang Xu^{b,*}

a. Institute of Photonics Technology, Jinan University, Guangzhou, Guangdong 510632, China
b. State Key Laboratory of Bioelectronics, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
c. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

* Corresponding Authors.

E-mail address: D. T. You (youdaotong@jnu.edu.cn), T. Guo (tuanguo@jnu.edu.cn) and C.X. Xu (xcxseu@seu.edu.cn)

[#] These authors contributed equally to this work.

Fig. S1. SEM cross-sectional view of BiFeO₃/Carbon nanofibers.

Fig. S2. (a) In situ SERS spectra of MB exposed to 532 nm laser irradiation using Ag-BiFeO₃/CNFs as substrate. (b) The relative intensity of the Raman band at 1620 cm⁻¹ as a function of measurement time. (c) The concentration variation $(\ln(C_0/C))$ versus reaction time. (d) The relative intensity of the Raman band at 1393 and 1499 cm⁻¹ as a function of measurement time and corresponding the concentration variation $(\ln(C_0/C))$ versus reaction time.

Fig. S3. (a) The physical picture of milk used for testing. (b) SERS spectra of CIP in milk at different concentrations from 10^{-10} to 10^{-4} M using Ag nanowires-BiFeO₃/CNFs SERS substrate, (b) SERS signal at a concentration of 10^{-10} M. (d) The curve relationship between SERS intensity at 1387 cm⁻¹ and concentrations of CIP solution.