Ultrahigh efficiency CH_4 photocatalytic conversion to C1 liquid products over cheap and plentiful CeO₂ at 30 °C

Hailong Tang^a, Tangtong Ju^a, Yue Dai^a, Meiling Wang^{a,*}, Yongqing Ma^{a, b,*}, Min

Wang^c and Ganhong Zheng^a

^a School of Materials Science and Engineering, Anhui University, Hefei, 230601, China

^b Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

^c School of Physics and optoelectronics engineering, Anhui University, Hefei, 230601, China

*To whom correspondence should be addressed.

Tel: (86) 13856996630, E-mail: mlw@ahu.edu.cn, yqma@ahu.edu.cn

Key words: CeO₂, oxygen vacancy, CH₄ conversion, photocatalysis, C1 products

Fig. S1-S8, Table S1-S4

Fig. S1 a) Particle size distributions of different catalysts calculated using Scherrer equation, b-d) Low- and high-magnification SEM images of representative samples.

Fig. S2 The nitrogen adsorption-desorption isotherms and pore size distributions of raw-CeO₂, 900-CeO₂(5) and 1200-CeO₂(5) respectively.

Fig. S3 UV-vis absorption spectra of different samples.

Fig. S4 a) XPS survey spectra of sample 1200-CeO₂, and high resolution Ce 3d and O 1s XPS spectra of sample b, c) raw-CeO₂, d, e) 900-CeO₂(5), f, g) 1000-CeO₂(5), h, i) 1100- CeO₂(5) and j, k) 1100- CeO₂(5) respectively.

Fig. S5 Photoluminescence spectra of raw-CeO₂, 900-CeO₂(5) and 1200-

CeO₂(5).

Catalyst	Main	Oxidant	Temperatur	Pressure	References
	Products		e		
Fe/TiO ₂	alcohol	H ₂ O ₂	Room	Atmospheric	17
			temperature	pressure	
Cu/C ₃ N ₄	ethanol	H ₂ O	Room	Atmospheric	19
			temperature	pressure	
Au-	CH ₃ OOH and	02	25 °C	0.1 MPa O ₂	21
CoO _x /TiO ₂	СН ₃ ОН			and 2.0 MPa	
ZnO	СН ₃ ООН,	H ₂ O ₂	50 °C	Atmospheric	22
nanosheets	СН ₃ ОН,			pressure	
	HCHO and				
	нсоон				
CeO ₂	ethanol and	water	25 °C	0.2 MPa	34
	aldehyde				
IrFe	СН ₃ СООН,	H ₂ O ₂	50 °C	3 MPa	41
supported	CH ₃ OH, and				
on ZSM-5	нсоон				

RGO-TiO ₂	Aldehyde and	Water	60 °C	Atmospheric	42
	acetone	vapor		pressure	
BiOCl	СН₃ОН	02	40 °C	Normal	43
CeO ₂	нсно,	H ₂ O ₂	30 ℃	2 MPa	Our work
	СН₃ОН,				
	CH ₃ OOH and				
	нсоон				

Table S1 Catalysts referenced in Fig. 4f and their photocatalytic experimental conditions.

Fig. S6 Different products yields and C1 products selectivity over a) 5 mg, b) 10 mg and c) 20 mg 1200-CeO₂(5) obtained as a function of photoexcitation time (2 MPa CH_4 , 30 °C, 165 μ L H₂O₂).

C1 liquid	e ⁻ transfered	C1	HCHO and	H_2O_2	Gain factor
products		selectivity	НСООН	conversion	
			selectivity	rate	
67.31	348.1	1	0.92	0.1	0.39

Table S2 Photocatalytic performance of 1200-CeO₂(5), experimental condition: (20 mg catalyst, 2 MPa CH₄, 70 °C, 165 μL H₂O₂, 2 h).

Fig. S7 High resolution Ce 3d and O 1s XPS spectra of sample 1200-CeO₂(5) a) after

photocatalysis and b) regenerated via reannealing treatments.

Fig. S8 Electrochemical impedance spectra of raw-CeO₂ and 1200-CeO₂(5) in 1 M Na₂SO₄ aqueous solution at 1.8 V vs reversible hydrogen electrode.

1200-CeO ₂ (5)	Ce ³⁺ /(Ce ³⁺ +Ce ⁴⁺)	O _v ratios (%)		
	(%)			
After 4th cycle	23.13	32.83		
Regenerated	27.4	41.45		

Table S3 $Ce^{3+}/(Ce^{3+}+Ce^{4+})$ and O_v ratios of 1200-CeO₂(5) after 4th cycle and

regeneration via the relative intensity ratios in XPS spectra.

radical	CH ₃ OH	НСНО	НСООН	CH ₃ COOH	CH ₃ OOH	CO ₂	C1
scavengers							products
Without	2.2	11.5	15.9	0.5	4.8	0.5	34.9
radical							
scavengers							
isopropanol	0.7	4.1	16.9	3.6	0.6	0	25.9
benzoquinone	0	0	0		0	3.2	0

Table S4 Yields of C1 products without and with radical scavengers.

Fig. S9 Yields of various products using CH₃OH and HCHO as the starting reactants respectively.