Understanding the effect of lattice polarisability on the electrochemical properties of lithium tetrahaloaluminates, LiAlX₄ (X = Cl, Br, I)

Nicolás Flores-González, Martí López, Nicolò Minafra, Jan Bohnenberger, Francesc Viñes, Svemir Rudić, Ingo Krossing, Wolfgang G. Zeier, Francesc Illas and Duncan H. Gregory*

Dr. Nicolás Flores-González, Prof. Duncan H. Gregory School of Chemistry, Joseph Black Building University of Glasgow Glasgow, G12 8QQ, United Kingdom E-mail: duncan.gregory@glasgow.ac.uk

Martí López, Dr. Francesc Viñes, Prof. Francesc Illas Departament of Ciència de Materials i Química Física Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona C/Martí i Franquès 1, 08028 Barcelona, Spain

Dr. Svemir Rudić ISIS Pulsed Neutron and Muon Source STFC Rutherford Appleton Laboratory Didcot, Oxfordshire, OX11 0QX, United Kingdom

Dr. Nicolò Minafra, Prof. Wolfgang G. Zeier Institute for Inorganic and Analytical Chemistry University of Münster Correnstr. 39, 48149, Germany

Dr. Jan Bohnenberger, Prof. Ingo Krossing Institut für Anorganische und Analytische Chemie Freiburger Materialforschungszentrum (FMF) Universität Freiburg Albertstr. 21, 79104 Freiburg, Germany

Synthesis

Further information on the preparation of each halide is provided below:

LiAlCl₄: The mechanochemical approach was developed by fixing the speed to 450 rpm and gradually increased milling times from 1 to 5 h. LiAlCl₄, could be formed after milling for 1 h, but LiCl was also evident, suggesting that the reaction was incomplete. After 3 h, the presence of LiCl was negligible. By milling times of 5 h, diffraction peaks corresponding to LiAlCl₄ broadened significantly, suggesting amorphization. Optimum milling parameters of 450 rpm/3 h were adopted to achieve a crystalline, single-phase product.

LiAlBr₄: First attempts to make LiAlBr₄ *via* ball milling were performed using the same parameters employed for LiAlCl₄ above, but milling times needed to be increased to achieve a crystalline, single phase product. Times from 3 h to 9 h were assessed, but LiBr was consistently detected in larger quantities with increased milling time, suggesting decomposition. The rotation speed was subsequently decreased and kept constant at 300 rpm, while the milling time was gradually increased from 4 to 8 h. A milling time of 6 h was found to be optimum to deliver phase-pure LiAlBr₄.

LiAlI₄: Initially synthesis of LiAlI₄ *via* ball milling was performed using the experimental parameters employed in the preparation of LiAlBr₄ above. Milling times from 1.5 h to 6 h were explored in order to optimise the procedure. After milling for 1.5 h, a new poorly crystalline phase was observed, with neither LiI nor AlI₃ detected. Increasing the milling time simply led to a further decrease of crystallinity. The rotation speed was subsequently decreased from 300 to 200 rpm. The most crystalline phase-pure product was obtained by milling at 200 rpm for 6 h.

Powder X-Ray Diffraction

Figure S1. Room temperature PXD patterns of mechanochemically-synthesised (a) LiAlCl₄, (b) LiAlBr₄ and (c) LiAlI₄, as compared to their respective diffraction patterns simulated with data obtained from Ref.¹

Electronic structure

Figure S2. Computed (DFT/PBE) band structures of (a) $LiAlBr_4$ and (b) $LiAlI_4$, with band energies scaled to the Fermi level (E_F). High symmetry **k**-points are noted as well as the indirect gap region between the valence band maximum (VBM) and the conduction band minimum (CBM).

Figure S3. Computed (DFT/PBE) total and atom-projected electronic density of states (DOS) of (a) LiAlCl₄, (b) LiAlBr₄ and (c) LiAlI₄.

Figure S4. Correlation between the measured (by linear sweep voltammetry; LSV^1) oxidative potential limit and computed (DFT/PBE) anion-p band centre of $LiAlX_4$ (X = Cl, Br, I) materials. The dotted line is a guide to the eye.

Figure S5. Correlation between the measured (LSV¹) oxidative potential limit and the computed (DFT/PBE) band gap energies of LiAl X_4 (X = Cl, Br, I) materials. The dotted line corresponds to a linear fit ($R^2 = 1.00$).

Figure S6. DR-UV-Vis spectra of $LiAlX_4$ materials (X = Cl, Br, I).

Figure S7. Tauc plots for allowed direct transitions in: (a) $LiAlBr_4$ and (b) $LiAlI_4$. The red lines correspond to the linear fits.

Figure S8. Correlation between computed electrochemical window (EW) values available in the literature and measured optical band gaps in LiAl X_4 (X = Cl, Br, I) materials. The EW for LiAlI₄ is predicted to be 1.4 V vs. Li⁺/Li.

Lattice dynamics

Figure S9. Computed (DFPT/PBE) phonon dispersions curves of (a) LiAlBr₄ and (b) LiAlI₄.

Figure S10. Comparison of computed (DFPT/PBE - Bottom) neutron-weighted VODS vs. the measured INS spectrum collected at 10 K (TOSCA, ISIS - Top) of (a) LiAlBr₄ and (b) LiAlI₄.

Table S1. Computed (DFPT/PBE average lithium-projected, anion-projected and total VDOS in $LiAlX_4$ (X = Cl, Br, I).

		$\omega_{\rm Li}$			ω_X			ω_{Total}	
Compound	THz	meV	cm ⁻¹	THz	meV	cm^{-1}	THz	meV	cm^{-1}
LiAlCl ₄	6.40	26.5	214	4.83	20.0	161	5.13	21.2	171
LiAlBr ₄	6.03	25.0	201	2.88	11.9	96.0	4.73	19.6	158
LiAlI ₄	5.44	22.5	182	2.04	8.44	68.1	4.86	20.1	162

Figure S11. Correlation between computed (DFPT/PBE) Li phonon band centres and computed (DFP/PBE) anion-p band centres in LiAl X_4 materials (X = Cl, Br, I). The dotted line corresponds to a linear fit ($R^2 = 0.972$).

Figure S12. Example of computed (DFPT/PBE) acoustic phonon along the $\Gamma \rightarrow Z$ and $\Gamma \rightarrow X$ lines in LiAl X_4 materials (X = Cl, Br, I).

Raman spectra

An isolated $[AlX_4]^-$ ion has $3 \times 5 - 6 = 9$ normal modes of vibration which are distributed among the representations of the T_d point group according to:

$$\Gamma_{optic} = A_1(\mathbf{R}) + E(\mathbf{R}) + 2F_2(\mathbf{R}) \tag{S1}$$

where A_1 is non-degenerate, E is doubly degenerate and F_2 is triply degenerate, and each term is Raman active. However, these data correspond to the gas phase and do not consider ionic interactions. This is especially true for extended ions, *e.g.* chains, layers, networks. In this work, the normal mode of vibration in crystals were obtained by nuclear site group analysis.² LiAl X_4 (X = Cl, Br, I) crystallise in monoclinic space group $P2_1/c$ (C_{2h}^5), with 24 atoms per unit cell. Since there are four atoms each of Li, Al, X1, X2, X3 X4 atoms that are all symmetry-equivalent, it is immediately seen by inspection of Table S2 that all atoms must occupy C_1 sites.

Table S2 . Crystallographic sites in $\binom{5}{2h}$ space group.							
Space group	Sites						
$\left(\mathcal{C}_{2h}^{5}\right)$	$eC_1(4) + (d + c + b + a)C_1(2)$						

From Table S3, the vibrational modes of the crystal are then $18A_g + 18A_u + 18B_g + 18B_u$ for contribution from Li, Al, X1, X2, X3 and X4 and, therefore, the total number of optical branches are $18A_g + 17A_u + 18B_g + 16B_u$ while the acoustic branches are $A_u + 2B_u$. From Table S4, it is found that A_g and B_g modes are Raman active and A_u and B_u are infrared active. Thus, one can write:

$$\Gamma_{optic} = 18A_g(R) + 17A_u(IR) + 18B_g(R) + 16B_u(IR)$$
(S2)

Table S3. Irreducible representations that result fromoccupying each of the sites within each space group.These give the translational lattice modes.

Site	Representation	
C_1	$3A_g + 3A_u + 3B_g + 3B_u$	
C_i	$3A_u + 3B_u$	
C_2	$A_g + A_u + 2B_g + 2B_u$	
C_s	$2A_g + A_u + B_g + 2B_u$	
C_{2h}	$A_u + 2B_u$	

Table S4. Character table of C_{2h} point group.

C_{2h}	Е	C_2^z	i	σ_{h}	Selections rules			
A_g	1	1	1	1	$\mathbf{R}_{z} \qquad \boldsymbol{\alpha}_{xx}, \boldsymbol{\alpha}_{yy}, \boldsymbol{\alpha}_{zz}, \boldsymbol{\alpha}_{xy}$			
A_u	1	1	-1	-1	T_z			
B_g	1	-1	1	-1	$R_x, R_y \qquad \alpha_{xz}, \alpha_{yz}$			
B _u	1	-1	-1	1	T_x, T_y			

The external and internal vibrational modes can be obtained by treating the tetrahaloaluminate anion independently. In other words, one can consider a unit cell built up from two species in each formula unit, *i.e.* a lithium cation and a $[AlX_4]^-$ anion. Each must occupy C_1 sites, and from Table S3 this gives $6A_g + 6A_u + 6B_g + 6B_u$ modes. $A_u + 2B_u$ are acoustical modes so there remain $6A_g + 5A_u + 6B_g + 4B_u$ modes, which are optical modes of translational character.

From Table S5, $3A_g + 3A_u + 3B_g + 3B_u$ may be assigned as librational modes resulting from oscillations of the tetrachloroaluminate anion. No librational modes are assigned to the Li⁺ cation since it has no rotational degrees of freedom. It should be noted that since A_g , A_u , B_g and B_u modes arise from both translational and rotational motions, they may not be assigned as pure librational or pure translational modes. Summing up, the total number of external modes of LiAl X_4 are thus $9A_g + 8A_u + 9B_g + 7B_u$. By subtracting the external modes from the total number of modes (Γ_{optic}), one obtains the result that the internal vibrational modes are $9A_g + 9A_u + 9B_g + 9B_u$.

Table S5. Librational lattice modes of polyatomic units

 when placed on each of the possible sites in the unit cell.

Site	Representation	
C_1	$3A_g + 3A_u + 3B_g + 3B_u$	
C_i	$3A_g + 3B_g$	
C_2	$A_g + A_u + 2B_g + 2B_u$	
C_s	$A_g + 2A_u + 2B_g + B_u$	
C_{2h}	$A_g + 2B_g$	

Computationally, to obtain a Raman spectrum from an optimised crystal structure, one needs to compute: (1) the phonons at the Γ point, *i.e.* the Brillouin zone centre, and (2) the derivative of the polarisability, *i.e.* the macroscopic dielectric tensor³. The former gives the vibrational mode frequency and it can be calculated either *via* the finite-displacement (FD) or density-functional perturbation theory (DFPT) approach implemented in VASP. The latter macroscopic dielectric tensor can be obtained *via* Equations S3-S5 already coded in Ref.⁴

$$I_{Raman} = 45\alpha^2 + 7\beta^2 \tag{S3}$$

$$\alpha = \frac{1}{3} \left(\alpha_{xx} + \alpha_{yy} + \alpha_{zz} \right)$$
 (S4)

$$\beta = \frac{1}{2} \left[\left(\alpha_{xx} - \alpha_{yy} \right)^2 + \left(\alpha_{xx} - \alpha_{zz} \right)^2 + \left(\alpha_{yy} - \alpha_{zz} \right)^2 + 6 \left(\alpha_{xy}^2 + \alpha_{xz}^2 + \alpha_{yz}^2 \right) \right]$$
(S5)

where α is the mean polarisability derivative and β is the anisotropy of the polarisability tensor derivative. Once the band positions and intensities have been calculated, the spectrum is then fitted by a Gaussian function, already coded in Ref.⁴

Ι	LiAlCl ₄		Ι	LiAlBr ₄			LiAlI ₄			
Experiment	FD/PBE		Experiment	FD/PBE		Experiment	FD/PBE	N 1		
<i>∞</i> /cm ⁻¹	<i>∞</i> /cm ⁻¹	Mode	<i>ω</i> /cm ⁻¹	<i>∞</i> /cm ⁻¹	Mode	ω/cm^{-1} ω/cm^{-1}	ω/cm ⁻¹	Mode		
	523.4	Bg		428.4	B_g		360.8	Bg		
520	519.5	A_g	426	425.6	A_{g}	360	358.6	A_g		
400	496.1	B_g	106	403.5	B_g	242	341.2	B_g		
499	494.8	A_g	400	402.6	A_g	545	339.5	A_g		
466	461.3	A_g	379	373.5	A_g	324	316.6	A_g		
	459.8	B_g		369.9	B_g		312.7	B_g		
352	344.9	A_g		241.4	A_g		214.1	A_g		
	343.9	B_g		239.6	B_g		212.1	B_g		
	268.9	B_g		210.5	B_g		186.8	B_g		
	267.8	A_g	212	207.9	A_g		179.7	A_g		
	247.5	B_g		206.2	B_g		145.4	B_g		
	246.8	A_g		203.5	A_g	148	144.8	A_g		
	202.7	B_g		163.1	B_g		143.5	B_g		
102	195.8	A_g		136.6	A_g		127.2	A_g		
172	191.5	B_g		122.6	B_g		89.8	B_g		
	179.1	A_g		119.5	B_g	86	85.9	A_g		
	171.6	B_g	121	117.9	A_g		84.3	B_g		
169	163.3	B_g		113.9	A_g		81.8	A_g		
105	162.5	A_g		105.0	B_g	79	75.0	B_g		
	145.0	A_g		102.2	A_g	17	74.2	A_g		
	133.2	B_g		84.2	A_g		61.6	A_g		
127	124.9	B_g		83.8	B_g		59.9	B_g		
127	122.8	A_g		78.6	B_g		58.1	B_g		
	118.3	A_g		77.6	A_g		56.6	A_g		
	98.5	B_g		66.4	B_g		50.5	B_g		
	92.3	A_g		64.7	A_g		49.3	A_g		
	85.7	A_g		58.4	B_g		45.7	B_g		
	83.1	B_g		57.8	A_g		44.0	A_g		
	74.3	B_g		51.5	B_g		40.8	B_g		
	74.0	A_g		50.3	A_g		39.5	A_g		
	67.7	A_g		48.9	B_g		38.6	B_g		
	64.6	B_g		46.5	A_g		35.4	A_g		
	56.5	B_g		40.3	B_g		32.1	B_g		
	50.9	A_g		35.8	A_g		29.8	A_g		
	50.3	B_g		34.5	B_g		27.2	B_g		
	32.0	A_g		22.6	A_g		18.9	A_g		

Tables S6. Experimental and computed Raman (DFT/FD/PBE) frequencies of $LiAlX_4$ (X = Cl, Br I). $\lambda_{laser} = 1064$ nm.

Figure S13. Theoretical simulated (DFT/FD/PBE) Raman spectrum of LiAlCl₄ showing the underlying 36 Raman active modes.

Figure S14. (a) Theoretically simulated (DFT/FD/PBE) vs. experimentally observed Raman spectrum of LiAlBr₄

($\lambda_{laser} = 1064 \text{ nm}$). (b) Theoretical simulated (DFT/FD/PBE) Raman spectrum of LiAlBr₄ showing the underlying 36 Raman active modes.

Figure S15. (a) Theoretically simulated (DFT/FD/PBE) vs. experimentally observed Raman spectrum of LiAlI₄ ($\lambda_{laser} = 1064 \text{ nm}$). **(b)** Theoretical simulated (DFT/FD/PBE) Raman spectrum of LiAlI₄ showing the underlying 36 Raman active modes.

Figure S16. Comparison of experimental room temperature Raman spectra of LiAl X_4 vs. Al X_3 starting materials. (a) X = Cl, (b) X = Br, and (c) X = I ($\lambda_{laser} = 1064$ nm).

Figure S17. Room temperature Raman spectra of (a) AlCl₃, (b) AlBr₃ and (c) AlI₃, showing the assignment of their respective bands ($\lambda_{\text{laser}} = 1064 \text{ nm}$).

AlCl ₃	Assignment	AlBr ₃ (Al ₂ Br ₆)	Assignment	AlI ₃ (Al ₂ I ₆)	Assignment
385	A_g	486	B_{2g}	406	B_{2g}
308	A_g	412	A_g	349	A_g
258	A_g	233	overtone	163	overtone
198	A_g	210	A_g	148	A_g
171	A_g	140	A_g	96	A_g
119	A_g	113	B_{2g}	82	B_{1g}
		84 ^(a)	B_{1g}	63	B_{2g}
		78 ^(a)	B_{3g}		
		70 ^(a)	A_g		

Table S7. Assignment of the Raman wave numbers (in cm⁻¹) for Al X_3 (X = Cl, Br, I).⁵⁻⁷

(a) deconvoluted values

Figure S18. Measured longitudinal, transverse and mean speeds of sound in $LiAlX_4$ materials (X = Cl, Br, I) and their extracted Debye frequencies.

Figure S19. Room temperature linear sweep voltammogram (0.1 mV s⁻¹) of InLi|LiAl X_4 |LiAl X_4 +C cells. Dashed lines indicate linear fits of the faradaic region. The bottom *x*-axis shows the values of the voltage versus In/InLi, the top *x*-axis shows the corresponding values of voltage versus Li⁺/Li.¹ Further permission related to the material excerpted should be directed to the ACS. <u>https://pubs.acs.org/doi/10.1021/acsmaterialslett.1c00055</u>.

Fable S8. T	ransport data	of mechanochemical	ly-synthesised	$LiAlX_4 (X =$	Cl, Br, I) materials. ¹
--------------------	---------------	--------------------	----------------	----------------	------------------------------------

Material	$\sigma_{RT} \times 10^5$ / S cm ⁻¹	$\sigma_0 \times 10^{\text{-5}}$ / K S cm $^{\text{-1}}$	E_a / eV
LiAlCl ₄	2.9(2)	8.6(7)	0.473(2)
LiAlBr ₄	3.3(2)	2.5(4)	0.437(4)
LiAlI ₄	1.2(1)	0.61(7)	0.429(3)

References

- N. Flores-González, N. Minafra, G. Dewald, H. Reardon, R. I. Smith, S. Adams, W. G. Zeier and D. H. Gregory, ACS Materials Lett., 2021, 3, 652-657.
- 2. D. L. Rousseau, R. P. Bauman and S. P. S. Porto, J. Raman Spectrosc., 1981, 10, 253-290.
- 3. D. Porezag and M. R. Pederson, Phys. Rev. B, 1996, 54, 7830-7836.
- 4. A. Fonari and S. Stauffer, vasp_raman_py, https://github.com/raman-sc/VASP/.
- J. A. Sanjurjo, M. A. Pires, G. E. Barberis, C. Rettori and Y. Yacoby, *Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals*, 1994, 244, 287-292.
- 6. G. M. Begun, C. R. Boston, G. Torsi and G. Mamantov, Inorg. Chem., 1971, 10, 886-889.
- 7. I. R. Beattie, T. Gilson and G. A. Ozin, J. Chem. Soc. A, 1968, 813-815.