Supplementary materials for:

# Descriptor for the design of 2D MXenes hydrogen evolution reaction

### electrocatalysts

Changxing Wang<sup>a,b,&</sup>, XiaoXu Wang<sup>c,d,&</sup>, TianYao Zhang<sup>e</sup>, Ping Qian<sup>a,f,\*</sup>, Turab Lookman<sup>g,\*</sup>,

YanJin Su<sup>a,b,\*</sup>

## The appendix materials file includes:

### **Supplementary Text:**

Ti<sub>2</sub>CO<sub>2</sub>-STM electrical conductivity and thermodynamic stability.

### **Supplementary Tables and Figures:**

Table S1. Ti<sub>2</sub>CO<sub>2</sub> free energy of three O atom site.

Table S2.  $\Delta G_{\rm H}$  of 1, 1/4, 1/9 and 1/16 H coverage for Ti<sub>2</sub>CO<sub>2</sub>.

Table S3. DFT-D3, optB86 and PBE results for Ti<sub>2</sub>CO<sub>2</sub>-STM.

Table S4. 3 Samples for the calculation of  $\Delta E_{ZPE}$  - T $\Delta S_{H}$ .

Table S5.  $\Delta h$  values between STM and Ti atoms layer in z axis.

Table S6. The comparation of  $\Delta G_{\rm H}$  and  $\Delta G_{\rm H}$  (H<sub>2</sub>O).

Table S7. Descriptor subsets for GPR and SVR model.

Figure S1. Band structure of Ti<sub>2</sub>CO<sub>2</sub> and Ti<sub>2</sub>CO<sub>2</sub>-V, Mn, Nb, Mo, W and Re.

Figure S2. Thermodynamic stability.

Figure S3. The correlation coefficients between Fermi level ( $E_f$ ),  $P_z$ -band center of O ( $\varepsilon_{Opz}$ ) and adsorption energy  $\Delta G_H$  of  $S_0$ ,  $S_1$ ,  $S_2$  sites.

Figure S4. Comparison of methods to simplify  $\Delta EZPE - T\Delta SH$ .

Figure S5.  $\Delta G_{\rm H}^{\rm pH}$  vs pH.

Figure S6. Deformation charge density and Bader analysis.

Figure S7. Effect of  $H_2O$  solvent.

| Table S1. | . Ti <sub>2</sub> CO <sub>2</sub> | free | energy | of | three | 0 | atom site. |
|-----------|-----------------------------------|------|--------|----|-------|---|------------|
|-----------|-----------------------------------|------|--------|----|-------|---|------------|

| Site | Free Energy (eV) |
|------|------------------|
| top  | -41.267          |
| fcc  | -46.332          |
| hcp  | -44.529          |

Table S2.  $\Delta G_{\rm H}$  of 1, 1/4, 1/9 and 1/16 H coverage for Ti<sub>2</sub>CO<sub>2</sub> (DFT-D3).

|     | $E_{Ti_2CO_2}$ | $E_{Ti_2CO_2 - H}$ | $E_{ m H}$ | ZEP | $\Delta G_{ m H}$ |
|-----|----------------|--------------------|------------|-----|-------------------|
| 1x1 | -46.205        | -49.312            | -3.3867    | 0.3 | 0.579             |
| 2x2 | -184.822       | -188.313           | -3.3867    | 0.3 | 0.195             |
| 3x3 | -415.850       | -419.428           | -3.3867    | 0.3 | 0.109             |
| 4x4 | -739.289       | -742.855           | -3.3867    | 0.3 | 0.120             |

Table S3. DFT-D3, optB86 and PBE results for Ti<sub>2</sub>CO<sub>2</sub>-STM.

| Ti <sub>2</sub> CO <sub>2</sub> -STM Name | $\Delta G_{ m H}$ - $S_0$ | $\Delta G_{ m H}$ - $S_1$ | $\Delta G_{\mathrm{H}}$ - $S_2$ |
|-------------------------------------------|---------------------------|---------------------------|---------------------------------|
| Ag-DFT-D3                                 | -0.85609935               | -0.4608638                | -0.47461648                     |
| Au-DFT-D3                                 | -0.74686509               | -0.21375962               | -0.15312428                     |
| Cd-DFT-D3                                 | -1.00974241               | -0.62648962               | -0.71560585                     |
| Co-DFT-D3                                 | -0.65639116               | -0.45996473               | -0.41776365                     |
| Cr-DFT-D3                                 | -0.40118437               | -0.24384245               | -0.23580838                     |
| Cu-DFT-D3                                 | -0.83375736               | -0.39191251               | -0.50522517                     |
| Fe-DFT-D3                                 | -0.3749933                | -0.18110057               | -0.13006822                     |
| Hf-DFT-D3                                 | 0.24053049                | 0.10605112                | 0.10175489                      |
| Ir-DFT-D3                                 | -0.56875761               | -0.4563445                | -0.39167908                     |
| Mn-DFT-D3                                 | -0.09787272               | 0.06921355                | 0.10628425                      |
| Mo-DFT-D3                                 | -0.12551281               | -0.03494635               | 0.03566989                      |
| Nb-DFT-D3                                 | 0.07412593                | 0.03896                   | 0.06695144                      |
| Ni-DFT-D3                                 | -0.34747101               | -0.08830282               | -0.07776402                     |
| Os-DFT-D3                                 | -0.3813331                | -0.27753513               | -0.19652168                     |
| Pd-DFT-D3                                 | -0.12956499               | 0.14112112                | 0.099247                        |
| Pt-DFT-D3                                 | 0.03984849                | 0.12602008                | 0.20184017                      |
| Re-DFT-D3                                 | -0.1312155                | -0.04230939               | 0.01529681                      |
| Rh-DFT-D3                                 | -0.64333312               | -0.50381069               | -0.45946523                     |
| Ru-DFT-D3                                 | -0.48416922               | -0.35237507               | -0.29065927                     |
| Sc-DFT-D3                                 | -0.48717301               | -0.41797811               | -0.45723971                     |

| Ta-DFT-D3 | 0.17030543  | 0.04075588  | 0.08450423  |
|-----------|-------------|-------------|-------------|
| Ti-DFT-D3 | 0.10887018  | 0.10887059  | 0.10887144  |
| V-DFT-D3  | -0.12643408 | 0.01727684  | 0.05935475  |
| W-DFT-D3  | -0.02282339 | 2.988E-05   | 0.07327152  |
| Y-DFT-D3  | -0.55703464 | -0.42770457 | -0.48510709 |
| Zn-DFT-D3 | -0.98170029 | -0.62031463 | -0.67713902 |
| Zr-DFT-D3 | 0.23463941  | 0.10697383  | 0.09660171  |
| Ag-optB86 | -0.67659    | -0.29131    | -0.30241    |
| Au-optB86 | -0.56384    | -0.05032    | 0.010255    |
| Cd-optB86 | -0.82276    | -0.23037    | -0.53733    |
| Co-optB86 | -0.49326    | -0.29379    | -0.24942    |
| Cr-optB86 | -0.23236    | -0.06932    | -0.06189    |
| Cu-optB86 | -0.65632    | -0.30982    | -0.32594    |
| Fe-optB86 | -0.23178    | -0.03296    | 0.020124    |
| Hf-optB86 | 0.433302    | 0.299516    | 0.294822    |
| Ir-optB86 | -0.41192    | -0.29665    | -0.22835    |
| Mn-optB86 | 0.058653    | 0.238191    | 0.275901    |
| Mo-optB86 | 0.299466    | 0.141132    | 0.210159    |
| Nb-optB86 | 0.246181    | 0.221493    | 0.243546    |
| Ni-optB86 | -0.15675    | 0.10024     | 0.120459    |
| Os-optB86 | -0.22969    | -0.1232     | -0.03839    |
| Pd-optB86 | 0.042504    | 0.321464    | 0.270509    |
| Pt-optB86 | 0.210886    | 0.30456     | 0.380071    |
| Re-optB86 | 0.021504    | 0.112033    | 0.172515    |
| Rh-optB86 | -0.48424    | -0.34218    | -0.29412    |
| Ru-optB86 | -0.32885    | -0.19562    | -0.13137    |
| Sc-optB86 | -0.31512    | -0.24923    | -0.28912    |
| Ta-optB86 | 0.339938    | 0.219313    | 0.262528    |
| Ti-optB86 | 0.29605     | 0.29603     | 0.296       |
| V-optB86  | 0.048249    | 0.197824    | 0.239768    |
| W-optB86  | 0.139293    | 0.176189    | 0.247819    |
| Y-optB86  | -0.36712    | -0.24725    | -0.30596    |
| Zn-optB86 | -0.81048    | -0.45232    | -0.50729    |
| Zr-optB86 | 0.430743    | 0.303139    | 0.291163    |
| Ag-PBE    | -0.77274    | -0.41023    | -0.41335    |
| Au-PBE    | -0.6414     | -0.16759    | -0.10585    |
| Cd-PBE    | -0.9103     | -0.54991    | -0.62939    |
| Co-PBE    | -0.56882    | -0.39411    | -0.34762    |
| Cr-PBE    | -0.33528    | -0.18656    | -0.18076    |
| Cu-PBE    | -0.75717    | -0.43586    | -0.45052    |
| Fe-PBE    | -0.27765    | -0.10096    | -0.04644    |
| Hf-PBE    | 0.338389    | 0.205875    | 0.207196    |
| Ir-PBE    | -0.49331    | -0.39189    | -0.31533    |
| Mn-PBE    | 0.005751    | 0.164986    | 0.202179    |

| Mo-PBE | -0.03989 | 0.052373 | 0.128726 |
|--------|----------|----------|----------|
| Nb-PBE | 0.152278 | 0.140655 | 0.157559 |
| Ni-PBE | -0.2872  | -0.05002 | -0.02727 |
| Os-PBE | -0.3066  | -0.2093  | -0.11721 |
| Pd-PBE | -0.06685 | 0.227788 | 0.146169 |
| Pt-PBE | 0.125179 | 0.210736 | 0.29249  |
| Re-PBE | -0.05902 | 0.019547 | 0.086375 |
| Rh-PBE | -0.70686 | -0.58105 | -0.52925 |
| Ru-PBE | -0.39743 | -0.28017 | -0.21018 |
| Sc-PBE | -0.41587 | -0.35432 | -0.38857 |
| Ta-PBE | 0.249634 | 0.128454 | 0.176582 |
| Ti-PBE | 0.20542  | 0.2054   | 0.20533  |
| V-PBE  | -0.03456 | 0.107845 | 0.148109 |
| W-PBE  | 0.044242 | 0.086891 | 0.165599 |
| Y-PBE  | -0.46634 | -0.35517 | -0.39848 |
| Zn-PBE | -0.89895 | -0.43972 | -0.60753 |
| Zr-PBE | 0.336672 | 0.209829 | 0.203926 |

#### Ti<sub>2</sub>CO<sub>2</sub>-STM electrical conductivity and thermodynamic stability.

The electrical conductivity is another important factor that affects the catalytic performance besides the catalytic activity. We know that  $Ti_2CO_2$  is a semiconductor material. The band gap calculated by LDA + U method is 0.42 eV, which is satisfied to the reference value <sup>1</sup>. Corresponding to different U values, we calculated the energy band structures of  $Ti_2CO_2$ -STM with better HER catalytic activity than  $Ti_2CO_2$ . As shown in **Figure S1**, except  $Ti_2CO_2$ -Mn ( $E_{gap} = 0.475 \text{ eV}$ ),  $Ti_2CO_2$ -V, Nb, Mo, W and Re are all transformed from semiconductors to conductors, thus allowing high charge transfer kinetics during the HER.



Figure S1. Band structure of  $Ti_2CO_2$  and  $Ti_2CO_2$ -V, Mn, Nb, Mo, W and Re. The band gaps of  $Ti_2CO_2$  and  $Ti_2CO_2$ -Mn and others  $Ti_2CO_2$ -STM are 0.42 eV, 0.475 eV and 0 eV, respectively. The Femi level is set to zero.

To ensure the stability of  $Ti_2CO_2$ -STM, we calculated STM doping formation energy of and the *Ab initio* molecular dynamics (AIMD) at different temperatures (300K and 500K). It can be seen from **Figure S2 (a)** that the doping formation energies are all negative, indicating that they are more stable relative defects. At the same time, there is an obvious corresponding relationship between the doping formation energy and the position of the periodic table of the metal. As shown in **Figure S2 (a)**, the doping energies of 3d, 4d and 5d metal atoms are the most stable when they are in the same group as Ti, such as Zr and Hf. And the stability of the doped system in the same period decreases with the site deviation from Ti. This phenomenon also exists in the STM adsorbed on the surface of 2D MXenes <sup>1</sup>. This trend is beneficial to select the STM for the experimental synthesis. The structures of  $Ti_2CO_2$ -STM with excellent catalytic activity and conductivity were found to be also relatively stable, and the stability order was Nb > V > Mo > W > Mn > Re.



Figure S2. Thermodynamic stability. (a) The formation energies of 3d, 4d and 5d STM doping in Ti vacancy of Ti<sub>2</sub>CO<sub>2</sub>; (b, c) AIMD of Ti<sub>2</sub>CO<sub>2</sub> at 300K and 500k; (d, e) AIMD of Ti<sub>2</sub>CO<sub>2</sub>-W at 300K and 500k.

In order to further verify the stability of  $Ti_2CO_2$ -STM, we studied the thermodynamic stability of  $Ti_2CO_2$  and  $Ti_2CO_2$ -STM by AIMD under NVT ensemble. As shown in **Figure S2 (b)**, the overall morphology of  $Ti_2CO_2$  or  $Ti_2CO_2$ -STM remains at 300K and 500K, even though the change is obvious at 500K than at 300K. Taking  $Ti_2CO_2$ -W with good catalytic activity, conductivity and metal doping defect stability as an example, it is found that the structure of  $Ti_2CO_2$ -W remains relatively stable at 300K and 500K.

According to the above analysis of catalytic activity, band structure and stability, it is found that the STM doping can effectively improve the catalytic performance of 2D  $Ti_2CO_2$  for HER.  $Ti_2CO_2$ -W, Nb, V, Mo and Re show excellent catalytic activity, conductivity and structural stability of HER, among which  $Ti_2CO_2$ -W has outstanding performance.



Figure S3. The correlation coefficients between Fermi level ( $E_f$ ),  $P_z$ -band center of O ( $\varepsilon_{Opz}$ ) and adsorption energy  $\Delta G_H$  of  $S_0$ ,  $S_1$ ,  $S_2$  sites.



Figure S4. Comparison of methods to simplify  $\Delta E_{ZPE}$  - T $\Delta S_{H}$ .

In Eq. (6), 0.3 eV is applied to replace  $\Delta E_{ZPE}$  - T $\Delta S_{H}$  from ref.<sup>2</sup>. And from ref.<sup>3</sup>, the  $\Delta E_{ZPE}$  - T $\Delta S_{H}$  of Ti<sub>2</sub>CO<sub>2</sub> is replaced by 0.265eV.

To evaluate the impact of simplification in using 0.3 eV to replace  $\Delta E_{ZPE}$  - T $\Delta S_{H}$ , we re-calculate  $\Delta G_{H}$  using the formula  $\Delta G_{H} = \Delta E_{H} + \Delta E_{ZPE}$  - T $\Delta S_{H}$  with 3 samples, as shown in **Figure S4**. The  $\Delta G_{H-0.3}$  is the  $\Delta G_{H}$  calculated by using 0.3 eV to replace  $\Delta E_{ZPE}$  -  $T\Delta S_{H}$ , and  $\Delta G_{H-cal}$  is calculated using Eq. (4), which is shown in **Table S4**.

| Table S4. 3 | Samples for | the calculation | of $\Delta E_{\text{ZPE}}$ - | $T\Delta S_{\rm H}$ . |
|-------------|-------------|-----------------|------------------------------|-----------------------|
|-------------|-------------|-----------------|------------------------------|-----------------------|

| Sample                                             | $E_{ZEP}^{H^{*}}$ | $E_{ZPE}^{*}$ | $\frac{1}{2}E_{ZEP}^{H_2}$ | $-T\Delta S_{ m H}$ | $\Delta E_{\rm ZPE}$ - T $\Delta S_{\rm H}$ |
|----------------------------------------------------|-------------------|---------------|----------------------------|---------------------|---------------------------------------------|
| Ti <sub>2</sub> CO <sub>2</sub>                    | 0.2998            | 0             | -0.135                     | 0.202               | 0.367                                       |
| $Ti_2CO_2$ -W- $S_0$                               | 0.3003            | 0             | -0.135                     | 0.202               | 0.367                                       |
| Ti <sub>2</sub> CO <sub>2</sub> -Co-S <sub>0</sub> | 0.2981            | 0             | -0.135                     | 0.202               | 0.365                                       |

As shown in **Figure S4**,  $\Delta E_{ZPE} - T\Delta S_H$  is about 0.367eV. Therefore, the difference between  $\Delta G_{H-cal}$ and  $\Delta G_{H-0.3}$  is one constant term equal to 0.067eV. The Ti<sub>2</sub>CO<sub>2</sub>-W-S<sub>0</sub> are still close to zero with  $\Delta G_{H-0.3 (Ti_2CO_2 - W - S_0)} = -0.022eV$ ,  $\Delta G_{H-cal} (Ti_2CO_2 - W - S_0) = 0.045eV$ . The absolute values are smaller than the absolute values of  $\Delta G_{H-0.3 (Ti_2CO_2)} = -0.109eV$  and  $\Delta G_{H-cal} (Ti_2CO_2) = -0.176 eV$ separately. The simplification for  $\Delta E_{ZPE}$  - T $\Delta S_H$  used in this paper does not affect the filter result.



Figure S5.  $\Delta G_{\rm H}^{\rm pH}$  vs pH.

The stability of Ti<sub>2</sub>CO<sub>2</sub>-W-S<sub>0</sub> under the standard hydrogen electrode and pH values is shown in **Figure S5**. The  $\Delta G_{\rm H}^{\rm pH}$  is calculated by Eq. (9), and calculation details are added in Methods. As shown in **Figure S5**, with pH from 0 to 14,  $|\Delta G_{\rm H}^{\rm pH}|$  is within 0.170 eV. The stability of Ti<sub>2</sub>CO<sub>2</sub>-W in different pH environments is acceptable.



Figure S6. Deformation charge density and Bader analysis. (a) Deformation charge density for Ti<sub>2</sub>CO<sub>2</sub>+H and (b) Ti<sub>2</sub>CO<sub>2</sub>-W+H-S<sub>0</sub>. (c-f) Bader charge for Ti<sub>2</sub>CO<sub>2</sub>, Ti<sub>2</sub>CO<sub>2</sub>-W+H, Ti<sub>2</sub>CO<sub>2</sub>-W, Ti<sub>2</sub>CO<sub>2</sub>-W+H-S<sub>0</sub>, the positive Bader charge (*B*) means electron gain. (g) MXenes structure model. (h-i)  $\Delta G_{\rm H}$  vs the average Bader charge of 3 metal atoms below O atoms ( $B_{\rm aveTM}$ ), and  $\Delta G_{\rm H}$  vs the by Bader charge of O atom ( $B_{\rm O}$ ).

As shown in **Figure S6 (a)** and **(b)**, the electron interaction of Ti-C and W-C bonds differs significantly in both the charge distribution direction and intensity. The O-Ti/W-C-Ti-O interaction acts as a chain that changes the electronic configuration of Ti-C and W-C directly affecting the electronic structure of the surface O atom. From **Figure S6 (c)** and **(e)**, the electron transfer number for the O atom (*B*o) from Ti and W for Ti<sub>2</sub>CO<sub>2</sub>-W is significant less than for Ti<sub>2</sub>CO<sub>2</sub>. Therefore, comparing Ti<sub>2</sub>CO<sub>2</sub>+H **(d)** and Ti<sub>2</sub>CO<sub>2</sub>-W+H-S<sub>0</sub> **(f)**,  $B_{H(Ti_2CO_2+H)} = -0.618e$  and  $B_{H(Ti_2CO_2-W+H-S_0)} = -0.630e$ . These show that the H atom in Ti<sub>2</sub>CO<sub>2</sub>-W+H-S<sub>0</sub> offers more electrons to match the ability of oxygen atoms to gain electrons, which leads to stronger bonding of O-H and lower adsorption energy.

We generalized the above conclusions to all Ti<sub>2</sub>CO<sub>2</sub>-STM systems. The Figure S6 (h) shows  $\Delta G_{\rm H}$ 

affected by the average Bader charge of 3 metal atoms below O atoms ( $B_{aveTM}$ ) for Ti<sub>2</sub>CO<sub>2</sub>-STM without H absorption. Figure S6 (i) shows the  $\Delta G_{\rm H}$  affected by the Bader charge of O atom ( $B_{\rm O}$ ) for Ti<sub>2</sub>CO<sub>2</sub>-STM without H absorption. For most doping systems,  $\Delta G_{\rm H}$  decreases with increase of  $B_{aveTM}$ , which shows that the  $\Delta G_{\rm H}$  mechanism for W has is generally good for most Ti<sub>2</sub>CO<sub>2</sub>-STM. In addition, the Sc, Y, Zn, Cd doping atoms, which have large atomic radii compared to the Ti atom, are located higher along the z axis than the Ti layer if doped in Ti<sub>2</sub>CO<sub>2</sub> (**Table S5**). The structure model is shown in the Up model of Figure S6 (g). When the doping atoms are located higher than Ti layer, even for the O layer along the z axis, the doping atoms and H are undergoing a direct interaction and electron transfer after H absorption at the  $S_0$  site. The correlation between  $\Delta G_{\rm H}$  and  $B_{aveTM}$  or  $B_{\rm O}$  for Sc, Y, Zn, Cd doping atoms in (h) and (i) is not shown. Therefore, alone Bader charge is inadequate to describe  $\Delta G_{\rm H}$ . Thus, the descriptor for  $\Delta G_{\rm H}$  need further exploration.

| Name | $\Delta h$ (Å) | Name | $\Delta h$ (Å) | Name | $\Delta h$ (Å) |
|------|----------------|------|----------------|------|----------------|
| Ag   | -0.0923        | Mo   | -0.2908        | Та   | -0.0019        |
| Au   | -0.1253        | Nb   | -0.0309        | Ti   | 0              |
| Cd   | 0.3512         | Ni   | -0.2811        | V    | -0.3012        |
| Co   | -0.3531        | Os   | -0.3921        | W    | -0.2569        |
| Cr   | -0.2991        | Pd   | -0.1847        | Y    | 0.54591        |
| Cu   | -0.2531        | Pt   | -0.1970        | Zn   | 0.24214        |
| Fe   | -0.3765        | Re   | -0.3641        | Zr   | -0.0841        |
| Hf   | 0.0925         | Rh   | -0.2920        |      |                |
| Ir   | -0.3363        | Ru   | -0.3572        |      |                |
| Mn   | -0.2656        | Sc   | 0.22732        |      |                |

Table S5. Δh values between STM and Ti atom layer along the z axis.

| Sample                                            | E*       | $E_*$ (H <sub>2</sub> O) | $E_{\mathrm{H}^*}$ | $E_{\mathrm{H}^{*}}(\mathrm{H}_{2}\mathrm{O})$ | $\Delta G_{ m H}$ | $\Delta G_{\rm H}$ (H <sub>2</sub> O) |
|---------------------------------------------------|----------|--------------------------|--------------------|------------------------------------------------|-------------------|---------------------------------------|
| Ti <sub>2</sub> CO <sub>2</sub>                   | -415.850 | -415.912                 | -419.428           | -419.790                                       | 0.109             | -0.156                                |
| Ti <sub>2</sub> CO <sub>2</sub> -W-S <sub>0</sub> | -418.493 | -418.602                 | -422.202           | -422.480                                       | -0.023            | -0.201                                |
| $Ti_2CO_2$ -W- $S_1$                              | -418.493 | -418.602                 | -422.202           | -422.443                                       | 2.988 E-05        | -0.173                                |
| Ti <sub>2</sub> CO <sub>2</sub> -W-S <sub>2</sub> | -418.493 | -418.602                 | -422.202           | -422.371                                       | 0.073             | -0.094                                |



Table S6. Comparation of  $\Delta G_{\rm H}$  and  $\Delta G_{\rm H}$  (H<sub>2</sub>O).

## Figure S7. Effect of H<sub>2</sub>O solvent.

The effect of H<sub>2</sub>O solvent is calculated by the VASPsol <sup>4</sup> method. As shown in **Table S6**, the free energy  $E_*$  (H<sub>2</sub>O) of about 0.10 eV decreases to  $E_*$ , but after H absorption, The free energy  $E_{H^*}$ (H<sub>2</sub>O) decreases by 0.25 eV compared to  $E_{H^*}$ . The final  $\Delta G_H$  with the H<sub>2</sub>O solvent effect is shown in **Figure S7**. The result is in accord with the conclusion from ref.<sup>5</sup>. The O terminal is hardly affected by the solvent, whereas the H terminal is affected significantly.

In total,  $|\Delta G_{\rm H}({\rm H_2O})|$  of Ti<sub>2</sub>CO<sub>2</sub>-W with H<sub>2</sub>O solvent is in the range of 0.20 eV. It retains good catalytic capacity in the H<sub>2</sub>O solvent.

| Number | Descriptor-GPR                                                              | <i>R</i> <sup>2</sup> (3-fold CV)<br>-GPR | Descriptor-SVR                                                                                                         | <i>R</i> <sup>2</sup> (3-fold CV)<br>-SVR |
|--------|-----------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 5      | $[E_{\rm f}, \overset{d_{\rm M_1-O}}{=}, R_{\rm M}, B_{\rm M}, CH_{\rm M}]$ | 0.931                                     | $[E_{\rm f}, d_{\rm M_1 - O}, R_{\rm M}, B_{\rm M}, \varepsilon_{\rm Md}]$                                             | 0.922                                     |
| 4      | $[E_{\rm f}, d_{\rm M_1-O}, R_{\rm M}, \varepsilon_{\rm Md},]$              | 0.928                                     | $[E_{\mathrm{f}}, \overset{d_{\mathrm{M_1}}-\mathrm{O}}{\longrightarrow}, B_{\mathrm{M}}, \varepsilon_{\mathrm{Md}},]$ | 0.921                                     |
| 3      | $[E_{\rm f}, d_{\rm M_1-O}, R_{\rm M}]$                                     | 0.901                                     | $[E_{\rm f}, \frac{d_{\rm M_1-O}}{2}, \varepsilon_{\rm Opz}]$                                                          | 0.891                                     |
| 2      | $[E_{\rm f}, d_{\rm M_1 - O}]$                                              | 0.855                                     | $[E_{\rm f}, d_{\rm M_1 - O}]$                                                                                         | 0.834                                     |
| 1      | $[E_{\mathrm{f}}]$                                                          | 0.63                                      | $[E_{\rm f}]$                                                                                                          | 0.76                                      |

Table S7. Descriptor subsets for GPR and SVR model.

The combinations of descriptors giving the optimal results from GPR and SVR models, are shown in **Table S7**. The 2 key descriptors  $E_{\rm f}$  and  $d_{\rm M_1-O}$  are still the most import descriptors for both the GPR and SVR models. The importance of the atom radius of the dopant metal ( $R_{\rm M}$ ) is seen in the GPR model.  $R_{\rm M}$  also shows the structural change due to the MXenes surface. This suggests that the HER for doping MXenes system is controlled by size factors as well.

#### Reference

- Peng, Q., Zhou, J., Chen, J., Zhang, T. & Sun, Z. Cu single atoms on Ti2CO2 as a highly efficient oxygen reduction catalyst in a proton exchange membrane fuel cell. *J. Mater. Chem. A* 7, 26062– 26070 (2019).
- Gao, G., O'Mullane, A. P. & Du, A. 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. ACS Catal. 7, 494–500 (2017).
- Meng, Z. *et al.* MXenes modified by single transition metal atom for hydrogen evolution reaction catalysts. *Appl. Surf. Sci.* 562, 150151 (2021).
- Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. A. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, (2014).
- Xu, H., Cheng, D., Cao, D. & Zeng, X. C. A universal principle for a rational design of singleatom electrocatalysts. *Nat. Catal.* 1, 339–348 (2018).