Supporting Information

Multi-Cavity Carbon Fiber Film Decorated with Co-N_x Doped

CNTs for Lithium-Sulfur Batteries with High-Areal-Capacity

Xiao-Fei Yu, Bin He, Wen-Cui Li, Tao Wu, Xin-Rong Chen and An-Hui Lu*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of

Technology, Dalian 116024, P. R. China

E-mail: anhuilu@dlut.edu.cn; Tel/Fax: +86-411-84986112

I. Supporting Experimental Details

Visualized adsorption experiment: Li_2S_6 solution was synthesized by mixing sulfur and lithium sulfides (Li_2S) at a molar ratio of 5:1 in 1,3-dioxolane (DOL)/1,2-dimethoxyethane (DME) (v:v = 1:1). Co-NCNTs@CNF-0.42 and CP with the same mass were added to 2 mL of Li_2S_6 solution (1 mmol L^{-1}), respectively.

Li₂S nucleation test: Li₂S₈ solution (0.2 mol L⁻¹) was prepared by mixing sulfur and Li₂S at a molar ratio of 7:1 with 1.0 mol L⁻¹ LiTFSI in diglyme for 48 h. Then, 25 μ L of Li₂S₈ catholyte was dropped onto the Co-NCNTs@CNF-0.42 or CP cathode, and 25 μ L of blank electrolyte was dropped onto the lithium anode. For Co-NCNTs@CNF-0.42/CP cathode, the cells were discharged to 2.12 / 2.09 V under a galvanostatic current of 0.112 mA and then kept at 2.10 / 2.07 V until the current dropped to below 10⁻⁵ A.

II. Supporting Figures

Fig. S1 TEM images of (a) Co-Al LDH and (b-c) MnO₂ nanowires.

Fig. S2 TEM images of MnO₂@Co-Al LDH film.

Fig. S3 TEM image of CNF.

Fig. S4 TEM image of Co-NCNTs@CNF-0.84.

Fig. S5 XRD pattern of MnO/Co-NCNTs@CNF.

Fig. S6 (a) XRD pattern and (b) N₂ sorption isotherm and pore size distribution of Co-NCNTs@CNF-0.84.

Samples –	$\mathbf{S}_{\mathrm{BET}}$	S _{micro}	V _{total}	V _{micro}	V _{meso} /V _{total}
	$m^2 g^{-1}$		cm ³ g ⁻¹		%
CNF	57.8	29.3	0.18	0.015	91.67
Co-NCNTs@CNF-0.21	49.8	21.9	0.15	0.010	93.33
Co-NCNTs@CNF-0.42	42.4	12.3	0.19	0.006	96.84
Co-NCNTs@CNF-0.84	59.6	6.1	0.21	0.003	98.57

Table S1 Pore structure parameters of Co-NCNTs@CNF-x and CNF.

Fig. S7 (a) CO_2 adsorption isotherms at 273 K and (b) corresponding micropore size distributions of Co-

NCNTs@CNF-x and CNF.

Fig. S8 (a) Raman spectra and (b) TG curves in airflow of Co-NCNTs@CNF-x and CNF.

Fig. S9 (a) C 1s, (b) N 1s, and (c) Co 2p XPS spectra of Co-NCNTs@CNF-0.42.

Fig. S10 Digital photographs of an adsorption experiment between Li₂S₆ and Co-NCNTs@CNF-0.42 or CP.

Fig. S11 XRD pattern of Co-NCNTs@CNF-0.42-S.

Fig. S12 (a) Macroscopic picture and (b, c) SEM images of Co-NCNTs@CNF-0.42-S.

Fig. S13 (a) STEM image of Co-NCNTs@CNF-0.42-S and corresponding elemental mappings for (b) C, (c) O,

(d) Co, (e) N, and (f) S.

Fig. S14 (a) CV curves at 0.1 mV s⁻¹ and (b) Nyquist plots of CP-S electrodes.

Fig. S15 Cycling performance of CP-S electrode without an IL at 0.2 C.

Fig. S16 Nyquist plots of Co-NCNTs@CNF-0.42 and CP symmetric batteries.

Fig. S17 Potentiostatic discharging curves of $Li_2S_8/diglyme$ solution at 2.10 / 2.07 V on the surfaces of Co-

NCNTs@CNF-0.42 and CP electrodes.

Fig. S18 In-situ XRD contour plot of Co-NCNTs@CNF-0.42-S electrode with the corresponding dischargecharge curves on the left and the diffraction intensity chart on the right.

Samples	S areal loading mg cm ⁻²	Cycle number	Reversible capacity mA h cm ⁻²	Refs.
Co-NCNTs@CNF- 0.42-S	6.5	100 (0.2 C)	5.14	This work
OVs-TiO ₂ @PP separator	3.6	100 (0.2 C)	4.50	[1]
FeP/rGO/CNTs	3.5	200 (1 C)	1.40	[2]
rGO@WO ₃	3.7	200 (1 C)	1.61	[3]
$MoO_2 - Mo_2N$ interlayer	4.0	100 (0.2 C)	2.36	[4]
$C_2N@NbSe_2/S$	5.6	80 (0.2 C)	3.70	[5]
MTQ@3DG/S	4.9	100 (0.1 C)	4.70	[6]
SAZ-AF separator	4.0	100 (2 C)	2.30	[7]
In ₂ O ₃ -G-CNT/S	5.9	200 (0.5 C)	3.90	[8]
NiMoO ₄ @NSCC/S	5.0	100 (0.2 C)	2.80	[9]
Ni-Co-P@C//PP	4.5	80 (0.2 C)	3.60	[10]
w/o DPDSe	5.0	55 (0.1 C)	3.75	[11]
Li ₂ S ₆ /ZnS _{1-x} -CC	5.0	100 (0.1 C)	3.25	[12]
CoSA-N-C@S	4.9	120 (0.2 C)	4.20	[13]
S/Fe _{3-x} C@C-500	3.0	50 (0.2 C)	3.00	[14]
S@Co/SA-Zn@N- C/CNTs	5.1	100 (0.2 C)	4.50	[15]

 Table S2 Comparison of electrochemical performances of Li/S cells with Co-NCNTs@CNF-0.42-S and results from references.

References

[1] Z. Li, C. Zhou, J. Hua, X. Hong, C. Sun, H.-W. Li, X. Xu and L. Mai, Adv. Mater., 2020, 32, 1907444.

[2] S. Huang, Y. V. Lim, X. Zhang, Y. Wang, Y. Zheng, D. Kong, M. Ding, S. A. Yang and H. Y. Yang, *Nano Energy*, 2018, **51**, 340-348.

[3] L. Ni, S. Duan, H. Zhang, J. Gu, G. Zhao, Z. Lv, G. Yang, Z. Ma, Y. Liu, Y. Fu, Z. Wu, J. Xie, M. Chen and G. Diao, *Carbon*, 2021, **182**, 335-347.

[4] J.-L. Yang, S.-X. Zhao, Y.-M. Lu, X.-T. Zeng, W. Lv and G.-Z. Cao, Nano Energy, 2020, 68, 104356.

[5] D. Yang, Z. Liang, C. Zhang, J. J. Biendicho, M. Botifoll, M. C. Spadaro, Q. Chen, M. Li, A. Ramon, A. O. Moghaddam, J. Llorca, J. Wang, J. R. Morante, J. Arbiol, S.-L. Chou and A. Cabot, *Adv. Energy Mater.*, 2021,

11, 2101250.

[6] B. Yu, A. Huang, K. Srinivas, X. Zhang, F. Ma, X. Wang, D. Chen, B. Wang, W. Zhang, Z. Wang, J. He and

Y. Chen, ACS Nano, 2021, 15, 13279-13288.

[7] C.-L. Song, Z.-H. Li, L.-Y. Ma, M.-Z. Li, S. Huang, X.-J. Hong, Y.-P. Cai and Y.-Q. Lan, ACS Nano, 2021, 15, 13436-13443.

[8]W. Hua, H. Li, C. Pei, J. Xia, Y. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao, B. Zhang, S.-Z. Qiao, Y. Wan and Q.-H. Yang, *Adv. Mater.*, 2021, **33**, 2101006.

[9] T. Sun, X. Zhao, B. Li, H. Shu, L. Luo, W. Xia, M. Chen, P. Zeng, X. Yang, P. Gao, Y. Pei and X. Wang, *Adv. Funct. Mater.*, 2021, **31**, 2101285.

[10] Z. Wu, S. Chen, L. Wang, Q. Deng, Z. Zeng, J. Wang and S. Deng. *Energy Stor. Mater.*, 2021, **38**, 381-388.

[11] M. Zhao, X. Chen, X.-Y. Li, B.-Q. Li and J.-Q. Huang, Adv. Mater., 2021, 33, 2007298.

- [12] J. Wang, Y. Zhao, G. Li, D. Luo, J. Liu, Y. Zhang, X. Wang, L. Shui and Z. Chen, *Nano Energy*, 2021, 84, 105891.
- [13]Y. Li, J. Wu, B. Zhang, W. Wang, G. Zhang, Z. W. Seh, N. Zhang, J. Sun, L. Huang, J. Jiang, J. Zhou and Y. Sun, *Energy Stor. Mater.*, 2020, **30**, 250-259.
- [14] Y. Zhang, G. Li, J. Wang, G. Cui, X. Wei, L. Shui, K. Kempa, G. Zhou, X. Wang and Z. Chen, Adv. Funct. Mater., 2020, 30, 2001165.

[15] R. Wang, R. Wu, X. Yan, D. Liu, P. Guo, W. Li and H. Pan, Adv. Funct. Mater., 2022, 2200424.