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Experimental Section

Chemicals. All chemicals were purchased from commercial supplies and used without
further purification. Nickel nitrate hexahydrate (Ni(NOj),-6H,O, 98%), Zinc nitrate
hexahydrate (Zn(NOj),-6H,O, 98%), 2-methylimidazole (2-MeIM, 99%), 2, 2'-azobis
(isobutyronitrile) (AIBN, 99%), and 4-vinylbenzyl chloride (VBC) (99%) were received from
Tianjin Fuchen Chemical Corporation. 1-vinyl-3-ethylimidazolium bromide (VEIMBr),
anhydrous ferric (III) chloride (FeCl;), 1, 2-dichloroethane (DCE), divinylbenzene (DVB,
containing 80% divinylbenzene isomers), methanol (CH;0H, 99%), and concentrated sulfuric
acid (H,SO4, 98 wt%) were obtained from Tianjin Hengshan Chemical Corporation. 3-
bromopropylene oxide (99%), 2-butyloxirane (99%), 2-(phenoxymethyl)oxirane (99%), 2-
phenyloxirane (99%), 2-((allyloxy)methyl)oxirane (99%), p-aminostyrene (St-NH,, 96%) were
received from Aladdin. Carbon dioxide and Ar gas were obtained from Tianjin Dongrun Gas
Co., Ltd.

Characterizations. The morphology and structure were acquired by field-emission scanning
electron microscopy with different accelerating voltage (SEM, FEI Nova NanoSEM450) and
transmission electron microscopy (TEM, FEI Talos F200S, 200 kV). The aberration-corrected
high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-
STEM) measurements were taken on a Titan Themis Cubed G2 60-300, FEI. X-ray diffraction
(XRD) patterns were investigated by a Bruker D8-Davinci equipped with Cu Ko radiation
source. X-ray photoelectron spectroscopy (XPS) measurements were conducted on a Thermo
Scientific ESCALab-250Xi spectrometer with monochromatic Al Ka radiation, and the binding
energies were calibrated using the C 1s peak at 284.6 eV. Nitrogen adsorption-desorption
isotherms were acquired on a surface area and porosity analyzer (Micromeritics ASAP 2020).
The content of Ni atoms was investigated by an Optima 7300 DV inductively coupled plasma
atomic emission spectrometer (ICP-AES). Fourier transform infrared (FT-IR) spectra were

performed on a Bruker VECTOR-22 spectrometer. The '"H-nuclear magnetic resonance (NMR)



spectra were analyzed and identified by a Bruker 400 spectrometer using CDCl; as a solvent
and tetramethylsilane (TMS) as an internal standard. Electron paramagnetic resonance (EPR)
spectra were collected by a Bruker EMXnano. Raman spectra were recorded on a Renishaw
inVia Reflex UV Raman spectrometer with an excitation laser wavelength of A = 532 nm. The
obtained liquid solution after reaction was identified by GC-MS, and was quantitatively
analyzed by GC equipped with flame ionization detector. Magnetic hysteresis loops of the
materials were meansured at room temperature via vibrating sample magnetometer (VSM,
MPMS XL-7).

Theoretical calculation details. All calculations in this work were performed using
Gaussian 09 program package. Full geometry optimizations and the energies corrected by zero-
point vibrational effects were performed to locate all the stationary points, using
DFT/B3LYP/6-311G. The intrinsic reaction coordinate path was traced to check the energy

profiles connecting each transition state to two associated minima of the proposed mechanism.
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Figure S1. Photographs of the detailed fabrication process for the preparation of Ni-BNCNTs@HMPs-NH,.



Figure S2. SEM image of the ZIF-ZnNi.



Figure S3. (a) SEM image and (b) aberration-corrected HAADF-STEM image of the Ni-RDNC.
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Figure S4. (a, b) SEM images, (c, d) aberration-corrected HAADF-STEM images, (¢) TEM image, and (f)
Raman spectrum of the Ni-BNCNTs.
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Figure S5. (a) Schematic illustration for the synthesis of Ni-RDNC and Ni-BNCNTs, (b) SEM image of Ni-

RDNC, (c) Photograph of ZIF-ZnNi methanol solution, (d) SEM image of Ni-BNCNTs.

As shown in Figure S5, when the ratio of Zn(NO;),-6H,0 and Ni(NO;),'6H,0 is 1, there is
a large amount of excess Ni(NOs),-6H,0 (green granular) at the bottom of the beaker at the end
of the reaction in addition to the production of ZIF-ZnNi (white powder). When the
Ni(NO3),-6H,0 was washed away, the rhombic dodecahedral structure remained after pyrolysis
(Figure S5b), while when the Ni(NOs),-6H,0 was not washed away, the bamboo-like nanotube
structure was formed after pyrolysis (Figure S5d).
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Figure S6. Formation mechanism of bamboo-like carbon nanotubes.



Figure S7. (a) SEM image (concentric backscattered retractable detector at 5 kV) and (b) TEM image of the

Ni-BNCNTs@HMPs-NH,.
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Figure S8. (a-g) SEM images and (h-n) TEM images of the Ni-BNCNTs@HMPs-NH, with different shell thickness prepared by different concentrations of precursors.

The ratio of ethanol to mixed monomer is (a, h) 1.8 mL/5.0 mmol, (b, i) 1.6 mL/5.0 mmol, (c, j) 1.4 mL/5.0 mmol, (d, k) 1.2 mL/5.0 mmol, (e, 1) 1.0 mL/5.0 mmol, (f, m)

0.8 mL/5.0 mmol, and (g, n) 0.6 mL/5.0 mmol.
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Figure S9. SEM image of the HMPs-NH,.
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Figure S10. The corresponding FT-EXAFS (a) k-space and (b) g-space fitting curves of Ni-BNCNTs.
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Figure S11. High-resolution XPS C 1s spectra of Ni-BNCNTs, Ni-BNCNTs@PILs-NH,, and Ni-

BNCNTs@HMPs-NH,.
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Figure S12. The XPS spectrum of high-resolution N 1s for Ni-BNCNTs@HMPs.
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Figure S13. (a) FT-IR spectra of ZIF-ZnNi, Ni-BNCNTs, HMPs-NH,, and Ni-BNCNTs@HMPs-NH,.
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Figure S14. The GC-MS spectrum of generated ring-opened intermediate.
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Figure S15. The photocurrent responses of Ni-BNCNTs@HMPs-NH,.
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Figure S16. The magnetic hysteresis loop of Ni-BNCNTs@HMPs-NH,.
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Figure S17. (a,b) SEM images and (¢) TEM image of Ni-BNCNTs@HMPs-NH, after using for 10 times.
(d) HAADF-STEM images and corresponding element mappings of Ni-BNCNTs@HMPs-NH, after using

for 10 times.
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Figure S18. Crude '"H-NMR spectra of cycloaddition of CO, with 2-(bromomethyl)oxirane by using Ni-
BNCNTs@HMPs-NH, (Table 1, Entry 1).
4-(bromomethyl)-1,3-dioxolan-2-one. 'H-NMR (400 MHz, CDCl;): 8 = 3.70-3.81 (m, 2H), 4.38-4.41 (dd,

1H,J=4Hz, J = 8 Hz), 4.56-4.60 (t, 1H, ] = 8 Hz), 4.94-5.00 (m, 1H).

21



(o) light irradiation 0.0
CcO (0}
A s =L
13

2
7 .
Before reaction
4 8
6 1 0 78
23
el I
b C
After reaction
a b ¢
dC f 0 O
O F
b ¢ gh (0]
78
0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Figure S19. Crude 'H-NMR spectra of cycloaddition of CO, with 2-(phenoxymethyl)oxirane by using Ni-

BNCNTs@HMPs-NH, (Table 2, Entry 1).

4-(phenoxymethyl)-1,3-dioxolan-2-one. 'H-NMR (CDCl;, 400 MHz) 8 5.81-5.91 (m, 1H), 5.20-5.30 (m,

2H), 4.79-4.84 (m, 1H), 4.37-4.52 (m, 2H), 4.03-4.06 (m, 2H), 3.59-3.70 (m, 2H) ppm.
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Figure S20. Crude '"H-NMR spectra of cycloaddition of CO, with 2-((allyloxy)methyl)oxirane by using Ni-
BNCNTs@HMPs-NH; (Table 2, Entry 2).
4-((Allyloxy)methyl)-1,3-dioxolan-2-one. 'H-NMR (CDCls, 400 MHz) § 5.81-5.91 (m, 1H), 5.20-5.30 (m,

2H), 4.79-4.84 (m, 1H), 4.37-4.52 (m, 2H), 4.03-4.06 (m, 2H), 3.59-3.70 (m, 2H) ppm.
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Figure S21. Crude 'H-NMR spectra of cycloaddition of CO, with 2-butyloxirane by using Ni-
BNCNTs@HMPs-NH, (Table 2, Entry 3).
4-n-Butyl-1,3-dioxolan-2-one. 'H-NMR (CDCl;, 400 MHz) 8 4.66-4.73 (m, 1H), 4.52 (t, J = 8.0 Hz, 1H),

4.06 (dd, J=7.3 Hz, J = 8.0 Hz, 1H), 1.63-1.85 (m, 2H), 1.30-1.49 (m, 4H), 0.92 (t, ] = 7.0 Hz, 3H) ppm.
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Figure S22. Crude 'H-NMR spectra of cycloaddition of CO, with 2-phenyloxirane by using Ni-

BNCNTs@HMPs-NH, (Table 2, Entry 4).
4-Phenyl-1,3-dioxolan-2-one. 'H-NMR (CDCl;, 400 MHz) & 7.44 (d, 3] = 6.4 Hz, 3H), 7.36 (d, J = 7.6 Hz,

2H), 5.70 (t, ] = 8.0 Hz, 1H), 4.80 (t, ] = 8.4 Hz, 1H), 4.35 (t, ] = 8.4 Hz, 1H) ppm.
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Table S1. Structural parameters extracted from the Ni K-edge EXAFS fitting.

Scattering
Sample _ CN R(A) c%(103A2)  AEy(eV) R factor
pair
Ni-BNCNTs Ni-N 4.0 1.88 9.8 8.01 0.016

CN is the coordination number; R is interatomic distance (the bond length between central atoms and
surrounding coordination atoms); o2 is Debye-Waller factor (a measure of thermal and static disorder in
absorber-scatterer distances); AE, is edge-energy shift (the difference between the zero kinetic energy value

of the sample and that of the theoretical model). R factor is used to value the goodness of the fitting.
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Table S2. Summary of the previously reported catalysts and our catalyst for the cycloaddition of CO, with epoxides.

: " Reacti

No. Samples Type Epoxide Co-catalyst/Solvent COE 1\5)[ r;:)sure T (°C) ti:z El(i;l Yield (%) Ref.
1 Co-POP porous organic polymers epichlorohydrin (8 mmol) None/None 0.1 100 8 >99 1
2 COP-222 covalent organic polymer epichlorohydrin (5 mmol) None/None 0.1 100 24 99 2
3 rho-ZMOF zeolite-like MOF propylene oxide (34.5 mmol) TBAB (0.62 mmol)/None 1 40 3 99.2 3
4 Amb-OH-I1-910 Amberlite resin bead propylene oxide (20 mmol) None/Water 1 80 24 95 4
5 MOF-5-MIX mesoporous nature epichlorohydrin (25 mmol) TBAB (0.25 mmol)/None 1.2 50 6 98 5
6 Phen*-PHP-2Br porous hybrid polymers epichlorohydrin (2 mmol) None/None 0.1 60 48 99 6
7 polylLs@MIL-101 MOF 3-bromopropylene oxide (1 mmol) None/Acetonitrile 0.1 70 24 85 7
8 IHCP-OH(1) microporous structure epichlorohydrin (15 mmol) None/None 3 135 1 99 8

. . 300 W
9 Bi-PCN-224 MOF propylene epoxide (4.5 mmol) TBAB (0.5 mmol)/None 0.1 6 99 9

xenon lamp
. . 780 nm

10 AuNPs-TBD nanoparticles propylene oxide (34.5 mmol) i TBAB (0.15 mmol)/None 0.1 LED 24 97 10
11 HPC-800 hollow structure 3-bromopropylene oxide (0.15 mmol) TBAB (0.1 mmol)/DMF 0.1 0.3 W/cm? 10 94 11
12 PMo,@Zr-Fc MOF nanosheets styrene oxide (12.5 mmol) TBAB (0.25 mmol)/None 0.1 0.4 W/cm? 8 87 12

: . : . This
13 Ni-BNCNTs@HMPs-NH, hierarchical porous 3-bromopropylene oxide (10 mmol) None/None 0.1 0.4 W/em? - 12 929 work
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