Electronic Supplementary Information

Submicron Ti₂CT_x MXene Particulates as High-Rate Intercalation Anode

Materials for Li-Ion Batteries

Cong Cui,^{ab} Ruqiao Dai,^{ab} Chao Zhang,^a Bingbing Fan^c and Xiaohui Wang^{*a}

- ^{a.} Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
- ^{b.} School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China.
- ^{c.} School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

Fig. S1. SEM images of (a) TiH_2 and (b) Al and TEM image of (c) carbon black.

Fig. S2. (a) XRD patterns and (b) Raman spectra of samples. The numbers represent the (1) pristine mixed powder and the samples synthesized at (2) 500°C for 1 h, (3) 600°C for 1 h, (4) 700 °C for 1 h, (5) 800 °C for 1 h, (6) 900 °C for 1 h, (7) 1000 °C for 1 h, (8) 1000 °C for 3 h, and (9) 1000 °C for 5 h.

Fig. S3. SEM images and corresponding EDS mappings of the samples synthesized at (a) 500 °C, (b) 600 °C, (c) 700 °C, (d) 800 °C, (e) 900 °C, and (f) 1000 °C for 1 h.

Fig. S4. (a) SEM image of micron graphite, (b) XRD pattern of the sample synthesized at 1000 °C for 1 h using micron graphite as carbon source, (c) SEM image of the as-prepared sample and corresponding EDS mapping results of (d) Ti, (e) Al, and (f) C

Fig. S5. Optical photographs of (a) cold-isostatic-pressing-treated reactant before (left) and after (right) heating at 1000 °C for 1 h, and (b) Ti_2AlC powder synthesized at 1000 °C for 1 h.

Fig. S6. EDS spectra of (a) Ti₂AlC synthesized by molten salt method at 1000 °C for 1 h and (b) etched Ti₂C T_x at 35 °C for 36 h. The signal of Cu is from copper sample holder.

Fig. S7. (a) XPS survey spectrum of Ti_2CT_x . (b) High-resolution XPS spectrum of C 1s.

Fig. S8. SEM images of (a) -200 mesh Ti₂AlC and (b) $1-Ti_2CT_x$ etched for 10 days. (c) Phase evolution of -200 mesh Ti₂AlC along with etching time.

Fig. S9. EDS spectra of (a) Ti_2AlC synthesized by solid-liquid reaction and (b) $1-Ti_2CT_x$ etched at 35 °C for 10 days. The signal of Cu is from copper sample holder.

Fig. S10. SEM images of (a) s-Ti₂C T_x and (b) l-Ti₂C T_x . Cross section morphologies and EDS mapping results of (c) s-Ti₂C T_x and (d) l-Ti₂C T_x .

Fig. S11. Rate performances of (a) s-Ti₂C T_x and (b) l-Ti₂C T_x .

Fig. S12. Determination of capacitive contribution of $s-Ti_2CT_x$ from the CV data. (a) 0.2 mV s^{-1} , (b) 0.5 mV s^{-1} , (c) 1 mV s^{-1} , (d) 2 mV s^{-1} , (e) 5 mV s^{-1} , (f) 10 mV s^{-1} , and (g) 20 mV s^{-1} .

Fig. S13. Determination of capacitive contribution of $1-\text{Ti}_2\text{C}T_x$ from the CV data. (a) 0.2 mV s⁻¹, (b) 0.5 mV s⁻¹, (c) 1 mV s⁻¹, (d) 2 mV s⁻¹, (e) 5 mV s⁻¹, (f) 10 mV s⁻¹, and (g) 20 mV s⁻¹.

Fig. S14. EIS spectra of $1-Ti_2CT_x$ collected at designed potentials. (a) Fresh cell. (b) 3.0 V. (c) 2.25 V. (d) 1.5 V. (e) 0.75V. (f) 0.05V.

Fig. S15. Schematic illustration of fabricating free-standing s-Ti₂C T_x /SWCNTs flexible electrode.

Fig. S16. (a-b) Optical photographs of [100]-LiFePO₄/C/SWCNTs flexible electrode, (c) SEM image of [100]-LiFePO₄/C, (d) SEM image of [100]-LiFePO₄/C/SWCNTs free-standing flexible electrode.

Fig. S17. (a) Discharge curve of s-Ti₂C T_x /SWCNTs electrode in the process of prelithiation, (b) initial discharge-charge curve of s-Ti₂C T_x /SWCNTs electrode, (c) rate performance of a full cell based on prelithiated s-Ti₂C T_x /SWCNTs anode and [100]-LiFePO₄/C/SWCNTs cathode, and (d) optical photograph of the full cell lighting up 25 LED lights.

Table S1. Atomic percentage of small-sized Ti_2AIC synthesized by molten salt method at 1000 °C for 1 h and s- Ti_2CT_x MXene.

Samples	С	Al	Cl	Κ	Ti	Cu	0	F
Ti ₂ AlC	33.73	19.96	0.24	0.23	44.8	1.05	-	-
s-Ti ₂ C T_x	38.40	0.54	3.39	-	19.38	-	29.84	8.45

Table S2. Binding energies for s-Ti₂C T_x .

Binding Type	Binding energy (eV)				
C–Ti	282.0	(C 1s)			
С–С	284.6	(C 1s)			
С–О	286.7	(C 1s)			
Ti–C	454.5 (Ti 2p _{3/2})	460.0 (Ti 2p _{1/2})			
$Ti-T_x$ (II)	455.5 (Ti 2p _{3/2})	461.0 (Ti 2p _{1/2})			
$Ti-T_x$ (III)	457.0 (Ti 2p _{3/2})	462.5 (Ti 2p _{1/2})			
Ti (IV)	458.6 (Ti 2p _{3/2})	464.1 (Ti 2p _{1/2})			
O–Ti (TiO ₂)	530.1 (O 1s)				
O-Ti	531.0 (O 1s)				
OH–Ti	532.2 (O 1s)				
О–Н (H ₂ O)	533.7 (O 1s)				
F–Ti	685.2	(O 1s)			
Cl–Ti	198.4 (2p _{3/2})	200.0 (2p _{1/2})			

Table S3. Atomic percentage of Ti_2AlC synthesized by solid-liquid reaction method and l- Ti_2CT_x MXene.

Samples	С	Al	Cl	K	Ti	Cu	Ο	F
Ti ₂ AlC	28.63	24.23	-	-	46.67	0.47	-	-
$1-Ti_2CT_x$	18.56	0.59	5.72	-	27.55	0.12	38.72	8.73

Table S4.	Simulation	results	of the	EIS	spectra	in	Fig.	6.
		1.00.00			5 p • • • • •			· ·

	$R_{ m s}/\Omega$	<i>CPE</i> ₁ -T/F	CPE ₁ -P	$R_{ m ct}/\Omega$	<i>CPE</i> ₂ -T/F	CPE ₂ -P	$R_{\rm m}/\Omega$	CPE ₃ -T/F	CPE ₃ -P
Fresh cell	5.48E+00	1.90E-05	8.50E-01	8.11E+01	2.47E-03	7.83E-01			
Error/%	1.51E-02	7.19E-02	9.15E-03	1.20E-02	9.84E-03	6.00E-03			
3 V- Discharge	2.82E+00	1.30E-05	8.49E-01	1.45E+02	3.61E-03	5.39E-01			
Error/%	2.67E-02	7.37E-02	9.29E-03	1.86E-02	1.88E-02	1.57E-02			
2.25 V- Discharge	2.65E+00	1.45E-05	8.44E-01	1.41E+02	3.30E-03	6.52E-01	6.04E+01	3.09E-02	7.85E-01
Error/%	2.16E-02	7.70E-02	1.29E-02	4.70E-02	2.33E-01	2.07E-01	2.43E-01	9.47E-02	3.93E-02
1.5 V- Discharge	2.69E+00	1.46E-05	8.43E-01	1.30E+02	1.41E-02	5.43E-01	6.48E+01	1.08E-01	8.06E-01
Error/%	2.02E-02	5.99E-02	8.33E-03	2.08E-02	1.39E-01	1.21E-01	Fixed	1.73E-01	7.39E-02
0.75 V- Discharge	2.87E+00	1.34E-05	8.54E-01	1.24E+02	3.32E-03	7.52E-01	5.17E+01	4.04E-02	6.73E-01
Error/%	1.69E-02	5.53E-02	7.13E-03	2.30E-02	2.09E-01	1.35E-01	1.75E-01	1.33E-01	6.12E-02
0.05 V	2.99E+00	1.34E-05	8.56E-01	1.17E+02	2.91E-03	7.69E-01	6.48E+01	8.61E-02	7.45E-01
Error/%	1.69E-02	5.58E-02	6.98E-03	1.99E-02	1.52E-01	9.35E-02	1.12E-01	1.93E-01	8.28E-02
0.75 V- Charge	3.42E+00	1.31E-05	8.56E-01	1.28E+02	2.66E-03	7.81E-01	6.51E+01	4.47E-02	6.86E-01
Error/%	1.51E-02	5.21E-02	6.57E-03	1.91E-02	1.56E-01	9.61E-02	1.25E-01	1.35E-01	6.17E-02
1.5 V- Charge	3.12E+00	1.32E-05	8.54E-01	1.27E+02	2.81E-03	7.30E-01	6.25E+01	1.04E-01	8.07E-01
Error/%	1.57E-02	5.43E-02	7.20E-03	2.39E-02	1.67E-01	1.09E-01	1.17E-01	1.74E-01	7.11E-02
2.25 V- Charge	3.10E+00	1.33E-05	8.45E-01	1.34E+02	3.12E-03	6.87E-01	5.22E+01	3.71E-02	7.65E-01
Error/%	1.65E-02	6.04E-02	9.02E-03	3.37E-02	2.29E-01	1.69E-01	1.91E-01	8.85E-02	3.80E-02
3 V- Charge	3.00E+00	1.33E-05	8.47E-01	1.52E+02	3.88E-03	5.35E-01			
Error/%	2.27E-02	6.35E-02	8.07E-03	1.62E-02	1.75E-02	1.44E-02			

Table S5. Simulation results of the EIS spectra in Fig. S13.

	$R_{ m s}/\Omega$	CPE ₁ - T/F	CPE_1 -P	$R_{\rm ct}/\Omega$	CPE ₂ -T/F	CPE ₂ -P	$R_{\rm m}/\Omega$	CPE ₃ -T/F	CPE ₃ -P
Fresh cell	1.77E+00	1.32E-05	8.10E-01	1.73E+02	2.34E-03	7.00E-01			
Error/%	4.13E-02	6.37E-02	7.82E-03	1.37E-02	1.47E-02	9.74E-03			
3 V-Discharge	2.01E+00	1.91E-05	7.61E-01	1.22E+02	3.41E-03	4.93E-01			
Error/%	4.92E-02	7.92E-02	1.06E-02	1.98E-02	1.58E-02	1.43E-02			
2.25 V-Discharge	2.17E+00	1.93E-05	7.57E-01	1.31E+02	5.63E-03	5.40E-01	7.87E+0 1	1.92E-02	6.80E-01
Error/%	4.97E-02	9.53E-02	1.61E-02	5.04E-02	1.84E-01	2.19E-01	2.31E-01	3.82E-02	Fixed
1.5 V-Discharge	2.23E+00	1.76E-05	7.62E-01	1.28E+02	9.34E-03	6.00E-01	7.97E+0 1	3.06E-02	6.50E-01
Error/%	3.88E-02	6.33E-02	8.16E-03	1.31E-02	1.18E-01	Fixed	8.69E-02	4.81E-02	Fixed
0.75 V-Discharge	2.42E+00	1.12E-05	8.07E-01	1.30E+02	4.11E-03	6.53E-01	8.36E+0 1	2.37E-02	6.93E-01
Error/%	2.93E-02	6.42E-02	8.34E-03	2.32E-02	1.59E-01	1.32E-01	2.24E-01	1.44E-01	6.04E-02
0.05 V	2.53E+00	7.86E-06	8.38E-01	1.56E+02	1.91E-03	7.84E-01	1.08E+0 2	7.23E-02	8.22E-01
Error/%	2.41E-02	5.00E-02	5.90E-03	1.39E-02	1.06E-01	6.00E-02	6.96E-02	1.51E-01	6.14E-02
0.75 V-Charge	2.51E+00	8.16E-06	8.33E-01	1.61E+02	1.72E-03	8.04E-01	9.58E+0 1	2.57E-02	7.41E-01
Error/%	2.35E-02	4.75E-02	5.63E-03	1.39E-02	1.24E-01	6.65E-02	8.41E-02	7.76E-02	3.51E-02
1.5 V-Charge	2.42E+00	1.01E-05	8.16E-01	1.42E+02	2.96E-03	6.76E-01	7.74E+0 1	4.32E-02	6.46E-01
Error/%	2.62E-02	5.61E-02	7.15E-03	2.06E-02	1.33E-01	9.22E-02	8.16E-02	4.67E-02	Fixed
2.25 V-Charge	2.26E+00	1.40E-05	7.88E-01	1.24E+02	5.93E-03	5.50E-01	7.18E+0 1	3.18E-02	7.00E-01
Error/%	3.17E-02	5.97E-02	7.55E-03	1.56E-02	1.31E-01	Fixed	5.40E-02	3.20E-02	Fixed
3 V-Charge	1.98E+00	2.02E-05	7.58E-01	1.21E+02	3.76E-03	4.93E-01			
Error/%	4.91E-02	7.82E-02	1.05E-02	1.96E-02	1.67E-02	1.49E-02			

Li coverage	E_{f}
0	0.00E+00
0.25	-1.86E+00
0.5	-3.76E+00
0.75	-5.09E+00
1	-6.40E+00
1.25	-7.29E+00
1.5	-8.27E+00
1.75	-9.11E+00
2	-9.90E+00

Table S6. Formation energy of $Ti_2CO_2Li_x$ super cell.