Supplementary Information

Synergistic effect of spatially isolated Ni₂P and NiO redox cocatalysts on g-C₃N₄ for sustainably efficient CO₂ photocatalytic reduction

Qian Li^{a,b}, Wenji Feng^a, Yiqiu Liu^{a,c}, Dongzhi Chen^b, Zhongbiao Wu^{a,c}, Haiqiang Wang^{a,c*}

^a Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education,

College of Environmental & Resources Science, Zhejiang University, Hangzhou 310058, P.R.

China

^b Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, P. R. China

^c Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas

Pollution Control, Hangzhou, 311202, P. R. China

d Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhoushan, 316004,

P. R. China

1. Experiments

(1) Batch experiments of CO₂ photocatalytic reduction

0.05 g photocatalysts were coated on a 2.5×2.5 cm² glass film, and 10 mL deionized water were added in the middle of the reactor. The reactor was then vacuumed and filled with pure CO₂ at ambient pressure, and such operation was repeated three times. The reactor was

^{*} Corresponding author:

⁽H. Wang) E-mail: haiqiangwang@zju.edu.cn; Tel. / Fax: +86-571-87953088.

Full postal address: Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, Hangzhou, 310058, P.R. China.

irradiated by a 300 W Xe lamp with a 420-nm cutoff filter for 4 h, then the gas products were evaluated with an Agilent 7890B gas chromatography (USA) equipped with a TCD detector connected to a Molecular Sieve 5A column, with He used as the carrier gas.

(2) Photodeposition experiments

 $0.1 \text{ g Ni}_2\text{P/NiO/CN}(0.25)$ were dispersed in 40 mL deionized water in a semi-closed glass container, after fully mixed for 10 min, 2 mL AgNO₃ (10 mM) and 2 mL Mn(NO₃)₂ solution (10 mM) were added. After N₂ purged for 15 min, the suspension was irradiated by a 300 W Xe lamp with a 420 nm cutoff filter for 3 h, during which N₂ was always purged to maintain an inert atmosphere. The filtrates were then adequately washed with deionized water, dried in a vacuum oven at 60°C.

2. Figures and charts

Figure S1. Schematic diagram of CO_2 photocatalytic reduction system (1-mass controller, 2water bubbler, 3-temperature controller for the water bubbler, 4-Xeon light, 5-photocatalytic reactor, 6-remperature controller for the photocatalytic reactor, 7-gas chromatography).

Figure S2. XRD patterns of 4%Ni₂P/CN(*x*) (the insert was the image of the residuals of Na₂HPO₂·H₂O after calcination) (a) and *x*Ni₂P/CN samples (b).

Figure S3 SEM images of CN (a), Ni(OH)₂/CN (b), Ni₂P/NiO/CN(1).

Figure S4. O_2 evolution over CN, NiO/CN, and Ni₂P/NiO/CN(MR) under visible-light irradiation for 4 h in batch experiments.

Figure S5. MS curves of CN (a), UV-vis spectra (b) and MS curve (c) of NiO.

Table S1. BET surface area (S_{BET}), average pore volume and pore size of CN, NiO and Ni₂P/NiO/CN(MR) samples.

Sample	$S_{ m BET}$	Average Pore	Pore Volume
	(m^{2}/g)	Size (nm)	(cm^{3}/g)
CN	59.70	7.30	0.186
NiO/CN	66.45	6.90	0.234
Ni ₂ P/NiO/CN(0.05)	61.21	8.05	0.249
Ni ₂ P/NiO/CN(0.125)	54.76	8.04	0.243
Ni ₂ P/NiO/CN(0.25)	46.73	7.99	0.238
Ni ₂ P/NiO/CN(1)	46.68	7.86	0.223