Flexible Eu@HOF fabric as highly selective and sensitive optical

synapse sensor for six laboratory volatile compounds identification

by neuromorphic computing

Xin Xu,^a and Bing Yan^{*,a}

^a Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China. E-mail: byan@tongji.edu.cn.

Electronic supplementary information

Experimental Section

Materials and physical measurements

Fig. S1. Picture of 1 under daylight, 290 nm UV light (on) and 290 nm UV light (off).

Fig. S2. (a) XPS spectra of N 1s electron in Eu@IsoMe and IsoMe. (b) XPS spectra of O 1s electron in Eu@IsoMe and IsoMe.

Fig. S3. (a–d) SEM diagrams of 1 in various resolutions of 10, 5, 1 and 500 $\mu m.$

Fig. S4. (a–e) EDX mapping of Eu, C, N, and O elements for **1**.

Fig. S5. EDS spectrum of **1**, involving the atom contents of Eu (7.97%), C (47.86%), N (13.73%) and O (30.44%).

Fig. S6. Schematic diagram for photoluminescence mechanism of Eu@IsoMe. (ISC: intersystem crossing; RISC: reverse intersystem crossing; TADF: thermally activated delayed fluorescence)

Fig. S7. Excitation spectrum of **1** (λ_{em} = 615 nm).

Fig. S8. CIE diagram of **1** for its 3D EEM (λ_{ex} = 250–400 nm).

Fig. S9. (a) Emission spectra of **1** and **1** in humidity ($\lambda_{ex} = 292$ nm). (b) Emission spectra of **1** at 20, 30, 40, 50 and 60 °C ($\lambda_{ex} = 292$ nm). (c) The cycle experiment of **1** in temperature range of 20–60 °C.

Fig. S10. PL lifetimes of 615 nm emission peak for 1-Nme (a), 1-Eme (b), 1-Mme (c), 1-Ede (d), 1-TFc (e), 1-HCl (f).

Fig. S11. Phosphorescence lifetimes of 484 nm emission peak for 1-Nme (a), 1-Eme (b), 1-Mme (c), 1-Ede (d), 1-TFc (e), 1-HCl (f).

Fig. S12. Emitting pictures of **1** in various LVC atmospheres under 290 nm UV light, which involving ammonia (5), phenylethylamine (6), diethylamine (7), triethylamine (8), phenylmethylamine (9), ethanolamine (10), dodecyl dimethyl tertiary amine (11), trichloroacetic acid (13), acetic acid (14), methanol (16), chloroform (17), trifluorometha nesulfonic acid (18), N-hexanol (19), tetrahydrofuran (20), formaldehyde (21), formamide (22), tetramethylammonium hydroxide (23), nitrobenzence (24), ethyl trifluoacetate (25) and benzaldehyde (26). (600 ppm, UV lamp: 8 W)

Fig. S13. (a–b) The concentration-dependent (0–600 ppm) emission spectra of **1-Nme** and emission intensity of 484 and 615 nm peaks. (c–d) The concentration-dependent (0–600 ppm) emission spectra of **1-Eme** and emission intensity of 484 and 615 nm peaks. (e–f) The concentration-dependent (0–600 ppm) emission spectra of **1-Mme** and emission intensity of 484 and 615 nm peaks. (g–h) The concentration-dependent (0–600 ppm) emission spectra of **1-Mme** and emission spectra of **1-Ede** and emission intensity of 484 and 615 nm peaks. (g–h) The concentration-dependent (0–600 ppm) emission spectra of **1-Ede** and emission intensity of 484 and 615 nm peaks.

Fig. S14. (a-b) The concentration-dependent (0-600 ppm) emission spectra of 1-TFc and emission

intensity of 362, 484 and 615 nm peaks. (c–d) The concentration-dependent (0–600 ppm) emission spectra of **1-HCl** and emission intensity of 258, 484 and 615 nm peaks.

Fig. S15. (a–f) Dependence of emission intensity ratio of 615 and 484 nm peaks on concentration of Nme, Eme, Mme, Ede, TFc and HCl. (λ_{ex} = 292 nm).

Fig. S16. Response times of **1** toward 600 ppm **Nme** (a), **Eme** (b), **Mme** (c), **Ede** (d), **TFc** (e) and **HCl** (f). ($\lambda_{em} = 615 \text{ nm}$).

Fig. S17. Emission intensity of 615 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) emission for **1** after 6, 5, 6, 4, 5 and 5 repetitions with 600 ppm **Nme** (a), **Eme** (b), **Mme** (c), **Ede** (d), **TFc** (e) and **HCI** (f) (λ_{ex} = 292 nm).

Fig. S18. PXRD patterns of 1-Nme, 1-Eme, 1-Mme, 1-Ede, 1-TFc, 1-HCl and 1.

Fig. S19. BPNN diagram indicating the concentration recognition function of Nme.

Fig. S20. (a) Framework of IsoMe. (b) The single hole of IsoMe with the length (9.2 Å) and width (3.7 Å).

Fig. S21. (a–o) 15 LVCs with suitable molecule size that can enter the hole of IsoMe framework. (a) **Nme**, (b) **Eme**, (c) **Mme**, (d) **Ede**, (e) NH₃, (f) diethylamine, (g) **HCI**, (h) **TFc**, (i) trifluoromethanesulfonic acid. (j) acetic acid, (k) ethanol, (l) formamide, (m) formaldehyde, (n) chloroform, (o) ethanolamine.

Fig. S22. (a–f) 11 LVCs with big molecule size that can't enter the hole of IsoMe framework. (a) trichloroacetic acid, (b) ethyl trifluoacetate, (c) tetrahydrofuran, (d) nitrobenzence, (e) N-hexanol, (f) triethylamine, (g) phenylmethylamine, (h) phenylethylamine, (i) tetramethylammonium hydroxide, (j) benzaldehyde, (k) dodecyl dimethyl tertiary amine.

Fig. S23. (a) Emission spectra of Iso and Iso-Ede ($\lambda_{ex} = 292 \text{ nm}$). (b) Emission spectra of Me and Me-Ede. (c) The combination of RNH₂ (**Nme, Eme, Mme** and **Ede**) and IsoMe ($\lambda_{ex} = 292 \text{ nm}$). (d) The combination of RNH₂ (**Nme, Eme, Mme** and **Ede**) and Iso.

Fig. S24. (a–f) EDX mapping of Eu, C, N, O and F elements for 1-TFc.

Fig. S25. EDS spectrum of 1-HCl, involving the atom contents of Eu, C, N, O and F.

Fig. S26. (a-f) EDX mapping of Eu, C, N, O and C; elements for 1-HCl.

Fig. S27. EDS spectrum of 1-TFc, involving the atom contents of Eu, C, N, O and Cl.

Fig. S28. (a) Emission spectra of Me and Me-HCl (λ_{ex} = 292 nm). (b) Emission spectra of Iso and Iso-HCl (λ_{ex} = 292 nm).

Fig. S29. The pictures of the flexible Cu/Ni conductive fabric.

Fig. S30. The BPNN 1 training curve.

Fig. S31. The BPNN 2 training curve.

Fig. S32. (a) Emission and excitation spectra of IsoMe. (b) Phosphorescence lifetime curve of IsoMe by monitoring 488 nm emission peak.

Table S1. Summary of phosphorescence decay lifetime of 1, 1-Eme, 1-Nme, 1-Mme, 1-Ede, 1-TFc and 1-HCI.

 Table S2. Summary of PL decay lifetime of 1, 1-Eme, 1-Nme,
 1-Mme, 1-Ede, 1-TFc and 1-HCl.

Table S3. CIE coordinates of 1 under various excitation from 250 to 400 nm.

Table S4. Summary of input and output information during the training of BPNN 1 for classifyingsix LVCs and blank.

Table S5. Network structure information of BPNN 1.

 Table S6.
 The summary of mean square error (MSE), original value (OV), calculated value (CV), variance (Var.) for BPNN 1.

Table S7. The summary of input and output information in real batch calculation during the test ofBPNN 1.

 Table S8.
 The matlab code of this BPNN 1.

Table S9. Summary of fluorescence sensing parameters of 1 for detecting Nme, Eme, Mme, Ede, TFc and HCI.

Table S10. Summary of input and output information during the training of BPNN 2 for recognizing the concentration of **Nme**.

Table S11. Network structure information of BPNN 2.

Table S12. The summary of mean square error (MSE), original value (OV), calculated value (CV), variance (Var.) of BPNN 2.

Table S13. The summary of input and output information in real batch calculation during the testof BPNN 2.

 Table S14.
 The matlab code of this BPNN 2.

Experimental Section

Materials and physical measurements

Eu(NO₃)₃·6H₂O was prepared by dissolving Eu₂O₃ (99.99%) solids in 68% nitric acid with recrystallization. All quinolones (≥98%) such as N-propylamine, ethylamine, methylamine, ethylenediamine, trifluoroacetic acid, hydrochloric acid, ammonia, phenylethylamine, diethylamine, triethylamine, phenylmethylamine, ethanolamine, dodecyl dimethyl tertiary amine, trichloroacetic acid, acetic acid, hydrochloric acid, methanol, chloroform, formamide, trifluorometha nesulfonic acid, N-hexanol, tetrahydrofuran, formaldehyde, tetramethylammonium hydroxide, nitrobenzence, ethyl trifluoacetate and benzaldehyde were all purchased from Sigma-Aldrich. Other regents were used without further purification. Powder X-ray diffraction (PXRD) patterns were collected with a Bruker D8 ADVANCE diffractometer using Cu $K\alpha$ radiation at 40 mA and 40 kV. SEM was performed on a Hitachi S-4800 field emission scanning electron microscope operating at 3 kV. Energy dispersive X-ray spectroscopy (EDX) and the EDX mapping image were obtained by the scanning electron microscope operating at 15 kV. X-ray photoelectron (XPS) spectra were recorded under ultrahigh vacuum (<10-6 Pa) at a pass energy of 93.90 eV with an Axis Ultra DLD spectrometer (Kratos) by using a Mg K α (1253.6 eV) anode. All binding energies were adjusted by using contaminant carbon (C 1s = 284.8 eV). Fourier transform infrared (FT-IR) spectra were recorded using a Nicolet IS10 infrared spectrophotometer. The photoluminescence (PL) spectra, kinetics scan curve and phosphorescence decay lifetime curve were recorded on an Edinburgh FLS920 spectrophotometer with a 450 W xenon lamp as an excitation source. Photoluminescence lifetime measurements were measured on the Edinburgh FLS920 spectrophotometer with a microsecond lamp (100 mW)

Fig. S1. Picture of 1 under daylight, 290 nm UV light (on) and 290 nm UV light (off).

Fig. S2. (a) XPS spectra of N 1s electron in Eu@IsoMe and IsoMe. (b) XPS spectra of O 1s electron in Eu@IsoMe and IsoMe.

Fig. S3. (a–d) SEM diagrams of 1 in various resolutions of 10, 5, 1 and 500 $\mu m.$

Fig. S4. (a-e) EDX mapping of Eu, C, N, and O elements for 1.

Fig. S5. EDS spectrum of **1**, involving the atom contents of Eu (7.97%), C (47.86%), N (13.73%) and O (30.44%).

Fig. S6. Schematic diagram for photoluminescence mechanism of Eu@IsoMe. (ISC: intersystem crossing; RISC: reverse intersystem crossing; TADF: thermally activated delayed fluorescence)

Fig. S7. Excitation spectrum of 1 (λ_{em} = 615 nm).

Fig. S8. CIE diagram of 1 for its 3D EEM (λ_{ex} = 250–400 nm).

Fig. S9. (a) Emission spectra of **1** and **1** in humidity ($\lambda_{ex} = 292 \text{ nm}$). (b) Emission spectra of **1** at 20, 30, 40, 50 and 60 °C ($\lambda_{ex} = 292 \text{ nm}$). (c) The cycle experiment of **1** in temperature range of 20–60 °C.

Fig. S10. PL lifetimes of 615 nm emission peak for 1-Nme (a), 1-Eme (b), 1-Mme (c), 1-Ede (d), 1-TFc (e), 1-HCl (f).

Fig. S11. Phosphorescence lifetimes of 484 nm emission peak for 1-Nme (a), 1-Eme (b), 1-Mme (c), 1-Ede (d), 1-TFc (e), 1-HCl (f).

Fig. S12. Emitting pictures of **1** in various LVC atmospheres under 290 nm UV light, which involving ammonia (5), phenylethylamine (6), diethylamine (7), triethylamine (8), phenylmethylamine (9), ethanolamine (10), dodecyl dimethyl tertiary amine (11), trichloroacetic acid (13), acetic acid (14), methanol (16), chloroform (17), trifluorometha nesulfonic acid (18), N-hexanol (19), tetrahydrofuran (20), formaldehyde (21), formamide (22), tetramethylammonium hydroxide (23), nitrobenzence (24), ethyl trifluoacetate (25) and benzaldehyde (26). (600 ppm, UV lamp: 8 W)

Fig. S13. (a–b) The concentration-dependent (0–600 ppm) emission spectra of **1-Nme** and emission intensity of 484 and 615 nm peaks. (c–d) The concentration-dependent (0–600 ppm) emission spectra of **1-Eme** and emission intensity of 484 and 615 nm peaks. (e–f) The concentration-dependent (0–600 ppm) emission spectra of **1-Mme** and emission intensity of 484 and 615 nm peaks. (g–h) The concentration-dependent (0–600 ppm) emission spectra of **1-Ede** and emission intensity of 484 and 615 nm peaks. (g–h) The concentration-dependent (0–600 ppm) emission spectra of **1-Ede** and emission intensity of 484 and 615 nm peaks.

Fig. S14. (a–b) The concentration-dependent (0–600 ppm) emission spectra of **1-TFc** and emission intensity of 362, 484 and 615 nm peaks. (c–d) The concentration-dependent (0–600 ppm) emission spectra of **1-HCl** and emission intensity of 258, 484 and 615 nm peaks.

Fig. S15. (a–f) Dependence of emission intensity ratio of 615 and 484 nm peaks on concentration of Nme, Eme, Mme, Ede, TFc and HCl. (λ_{ex} = 292 nm).

Fig. S16. Response times of 1 toward 600 ppm Nme (a), Eme (b), Mme (c), Ede (d), TFc (e) and HCl (f). (λ_{em} = 615 nm).

Fig. S17. Emission intensity of 615 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$) emission for **1** after 6, 5, 6, 4, 5 and 5 repetitions with 600 ppm **Nme** (a), **Eme** (b), **Mme** (c), **Ede** (d), **TFc** (e) and **HCl** (f) (λ_{ex} = 292 nm).

Fig. S18. PXRD patterns of 1-Nme, 1-Eme, 1-Mme, 1-Ede, 1-TFc, 1-HCl and 1.

Fig. S19. BPNN diagram indicating the concentration recognition function of Nme.

Fig. S20. (a) Framework of IsoMe. (b) The single hole of IsoMe with the length (9.2 Å) and width (3.7 Å).

Fig. S21. (a–o) 15 LVCs with suitable molecule size that can enter the hole of IsoMe framework. (a) **Nme**, (b) **Eme**, (c) **Mme**, (d) **Ede**, (e) NH₃, (f) diethylamine, (g) **HCl**, (h) **TFc**, (i) trifluoromethanesulfonic acid. (j) acetic acid, (k) ethanol, (l) formamide, (m) formaldehyde, (n) chloroform, (o) ethanolamine.

Fig. S22. (a–f) 11 LVCs with big molecule size that can't enter the hole of IsoMe framework. (a) trichloroacetic acid, (b) ethyl trifluoacetate, (c) tetrahydrofuran, (d) nitrobenzence, (e) N-hexanol, (f) triethylamine, (g) phenylmethylamine, (h) phenylethylamine, (i) tetramethylammonium hydroxide, (j) benzaldehyde, (k) dodecyl dimethyl tertiary amine.

Fig. S23. (a) Emission spectra of Iso and Iso-Ede (λ_{ex} = 292 nm). (b) Emission spectra of Me and Me-Ede. (c) The combination of RNH₂ (**Nme, Eme, Mme** and **Ede**) and IsoMe (λ_{ex} = 292 nm). (d) The combination of RNH₂ (**Nme, Eme, Mme** and **Ede**) and Iso.

Fig. S24. (a-f) EDX mapping of Eu, C, N, O and F elements for 1-TFc.

Fig. S25. EDS spectrum of 1-HCl, involving the atom contents of Eu, C, N, O and F.

Fig. S26. (a-f) EDX mapping of Eu, C, N, O and C; elements for 1-HCl.

Fig. S27. EDS spectrum of 1-TFc, involving the atom contents of Eu, C, N, O and Cl.

Fig. S28. (a) Emission spectra of Me and Me-HCl (λ_{ex} = 292 nm). (b) Emission spectra of Iso and Iso-HCl (λ_{ex} = 292 nm).

Fig. S29. The pictures of the flexible Cu/Ni conductive fabric.

Fig. S30. The BPNN 1 training curve.

Fig. S31. The BPNN 2 training curve.

Fig. S32. (a) Emission and excitation spectra of IsoMe. (b) Phosphorescence lifetime curve of IsoMe by monitoring 488 nm emission peak.

Sample	λ _{ex} (nm)	$\lambda_{_{em}}($ nm $)$	τ ₁ (ms)	A 1	Percentage (%)	τ ₂ (ms)	A ₂	Percentage (%)	τ*	χ²
1	292	484	819.48	2009.31	56.14	1550.45	829.71	43.86	1140.08	1.804
1-Eme	292	484	476.02	542.54	100.00					1.434
1-Nme	292	484	543.56	714.74	100.00					1.634
1-Mme	292	484	1029.62	935.96	100.00					1.815
1-Ede	292	484	595.84	63.99	100.00					1.229
1-TFc	292	484	393.47	187.89	7.32	1163.78	804.60	92.68	1075.66	1.522
1-HCl	292	484	594.05	63.79	100.00					1.333
IsoMe	292	484	1330.17	3933.56	65.69	3251.42	696.31	34.31	1940.2	1.231

Table S1. Summary of phosphorescence decay lifetime of 1, 1-Eme, 1-Nme, 1-Mme, 1-Ede, 1-TFcand 1-HCI.

 $[\tau^* = (A_1\tau_1^2 + A_2\tau_2^2)/(A_1\tau_1 + A_2\tau_2)]$

Sample	λ _{ex} (nm)	$\lambda_{_{ m em}}$ (nm)	τ ₁ (us)	A 1	Percentage (%)	τ ₂ (s) Α ₂		Percentage (%)	τ*	χ²
1	292	615	261.80	1047.54	100.00					1.000
1-Eme	292	615	247.85	559.84	33.23	607.37	459.08	66.77	487.91	1.329
1-Nme	292	615	246.01	539.09	31.32	595.40	488.50	68.68	485.97	1.634
1-Mme	292	615	199.08	584.37	31.09	593.82	434.23	68.91	471.09	1.274
1-Ede	292	615	251.46	1310.63	35.66	752.77	789.82	64.34	573.99	1.023
1-TFc	292	615	216.11	903.07	50.06	471.71	101.17	49.94	266.10	1.243
1-HCl	292	615	3.24	11420.58	42.53	166.74	299.66	57.47	97.17	1.191

 $[\tau^* = (A_1\tau_1^2 + A_2\tau_2^2)/(A_1\tau_1 + A_2\tau_2)]$

 Table S3. CIE coordinates of 1 under various excitation from 250 to 400 nm.

Excitation	х	У	Excitation	x	У
250	0.3841	0.3266	330	0.2275	0.215
260	0.4035	0.3275	340	0.2146	0.1862
270	0.4039	0.3267	350	0.2056	0.1355
280	0.4159	0.327	360	0.2062	0.1214
290	0.4188	0.3262	370	0.191	0.1175
300	0.4524	0.3202	380	0.2681	0.2056
310	0.3735	0.283	390	0.2247	0.203

320 0.2595 0.2407 400 0.2945 0.2407	22
---	----

Inp	ut (R.G.B va	alue)		Output data (test objects)							
(I - I ₀)/I ₀	$ au_{PL}$	τ _P	Nme	Eme	Mme	Ede	TFc	HCI	Blank		
0.405	487.91	476.02	1	0	0	0	0	0	0		
0.665	485.97	543.56	0	1	0	0	0	0	0		
1.108	471.09	1029.62	0	0	1	0	0	0	0		
2.81	573.99	595.84	0	0	0	1	0	0	0		
-0.162	266.1	393.47	0	0	0	0	1	0	0		
-0.674	97.17	594.05	0	0	0	0	0	1	0		
0	261.8	1140.08	0	0	0	0	0	0	1		

Table S4. Summary of input and output information during the training of BPNN 1 for classifying six LVCs and blank.

In Table S4, all data is used to training the BPNN 1. The $(I - I_0)/I_0$, τ_{PL} and τ_P values of **1-Nme**, **1-Eme**, **1-Mme**, **1-Ede**, **1-TFc**, **1-HCl** and **1** as input information are inputted in the input column of the BPNN. Various "0" and "1" inputted into the output column of the BPNN, in which "0" represents the false test object, and "1" represents the correct test object. All data is used to train the BPNN 1.

Table S5. Network structure information of BPNN 1.

	Network structure in	nformation								
Input layer	3 neurons	1 Paranoid								
Hidden layer 1	5 neurons	1 Paranoid								
Hidden layer 2	6 neurons	1 Paranoid								
Output layer	7 neurons									
Network type	FANN_NETTYPE_LAYER									
Training function	FANN_TRAIN_RPROP									
Error function	FANN_ERRORFUNC_LINEAR									
Termination function	FANN_STOPFUNC_MSE									
Hidden layer excitation function	FANN_SIGMOID_SYMMETRIC									
Output layer excitation function	FANN_SIGMOID_SYMMETRIC									
Output layer excitation function FANN_SIGMOID_SYMMETRIC Network weight value										
Arrangement	Wire number	Output point (n)	Input point (m)	Weight value (W)						
	0	0	4	1.10505						
	1	1	4	2.12914						
	2	2	4	0.548921						
	3	3	4	0.594116						
1	4	0	5	1.89517						
	5	1	5	1.73458						
	6	2	5	1.3717						
	7	3	5	-0.266689						

	8	0	6	2.53372
	9	1	6	0.278359
	10	2	6	0.0674679
	11	3	6	0.69116
	12	0	7	-0.620052
	13	1	7	0.857591
	14	2	7	2.88918
	15	3	7	1.34636
	16	0	8	1.49494
	17	1	8	-2.21909
	18	2	8	1.52444
	19	3	8	1.65937
	20	4	10	0.241452
	21	5	10	1.02473
	22	6	10	-3.00139
	23	7	10	2.78147
	24	8	10	0.424472
	25	9	10	-0.0287807
	26	4	11	-0.219319
	27	5	11	1.03912
	28	6	11	0.370994
	29	7	11	0.237197
	30	8	11	3.82317
	31	9	11	1.31334
	32	4	12	1.98588
	33	5	12	1.21297
	34	6	12	29.3638
	35	7	12	4.67511
2	36	8	12	0.587711
	37	9	12	-0.282918
	38	4	13	-0.273239
	39	5	13	2.69121
	40	6	13	-1.40221
	41	7	13	-90.5064
	42	8	13	-36.3222
	43	9	13	-553.569
	44	4	14	1.48272
	45	5	14	0.762762
	46	6	14	-0.337677
	47	7	14	11.2883
	48	8	14	-0.276754
	49	9	14	1.65234
	50	4	15	0.651955
	51	5	15	2.24245
		-		

_

52	6	15	-0.532953
53	7	15	0.598986
54	8	15	-1.01524
55	9	15	-5.35487
56	10	17	11.1918
57	11	17	-34.3962
58	12	17	-6.18197
59	13	17	2.27025
60	14	17	0.445497
61	15	17	5.43375
62	16	17	-5.85281
63	10	18	0.65994
64	11	18	-38.8956
65	12	18	29.3379
66	13	18	18.0049
67	14	18	8.53059
68	15	18	0.0529693
69	16	18	-5.50438
70	10	19	1500
71	11	19	620.194
72	12	19	1500
73	13	19	1500
74	14	19	986.717
75	15	19	1500
76	16	19	756.246
77	10	20	-38.346
78	11	20	31.2211
79	12	20	9.63353
80	13	20	11.8137
81	14	20	-0.320654
82	15	20	10.8448
83	16	20	-10.986
84	10	21	-25.7457
85	11	21	-6.70965
86	12	21	1.11416
87	13	21	3.09921
88	14	21	-22.8434
89	15	21	1.93863
90	16	21	-4.21398
91	10	22	5.55457
92	11	22	24.7463
93	12	22	0.5815
94	13	22	8.93692

3

96	15	22	0.643751
97	16	22	-14.6922
98	10	23	16.9898
99	11	23	0.877639
100	12	23	-14.8437
101	13	23	3.52038
102	14	23	15.3328
103	15	23	16.407
104	16	23	-12.4436

Input / output column coefficients for manual calculation

Listing	Minimum	Maximum		
(I - I ₀)/I ₀	-0.709474	2.95789		
$ au_{PL}$	92.3115	604.2		
τ _P	373.796	1200.08		
Nme	0	1		
Eme	0	1		
Mme	0	1		
Ede	0	1		
TFc	0	1		
HCI	0	1		
Blank	0	0 1		
	Deviation statistics	: mean variance		
Listing	All rows	Calculation line	Test line	
Nme	4.72857e-11	4.72857e-11	0	
Eme	0	0	0	
Mme	0	0	0	
Ede	0	0	0	
TFc	6.42857e-13	6.42857e-13	0	
HCI	2.96429e-11	2.96429e-11	0	
Blank	2.85714e-13	2.85714e-13	0	

Table S6. The summary of mean square error (MSE), original value (OV), calculated value (CV), variance (Var.) for BPNN 1.

1	1 Input item		Nme (MSE = 4.72857e-11)		Eme (MSE = 0)		Mme (MSE = 0)			Ede (MSE = 0)					
2	(I - I ₀)/I ₀	τ _{PL}	τ _P	ov	CV.	Var.	ov.	cv.	Var.	ov.	cv.	Var.	ov	сv	Var
3	0.405	487.91	476.02	1	0.999991	8.1e-11	0	0	0	0	0	0	0	0	0
4	0.665	485.97	543.56	0	9e-06	8.1e-11	1	1	0	0	0	0	0	0	0
5	1.108	471.09	1029.62	0	0	0	0	0	0	1	1	0	0	0	0
6	2.81	573.99	595.84	0	0	0	0	0	0	0	0	0	1	1	0
7	-0.162	266.1	393.47	0	1.3e-05	1.69e-10	0	0	0	0	0	0	0	0	0
8	-0.674	97.17	594.05	0	0	0	0	0	0	0	0	0	0	0	0
9	0	261.8	1140.08	0	0	0	0	0	0	0	0	0	0	0	0

1	TFc (MSE = 6.42857e-13)				HCl (MSE = 2.96429e-11)			Blank (MSE = 2.85714e-13)		
2	ov.	CV.	Var.	ov.	cv.	Var.	ov.	CV.	Var.	
3	0	1.5e-06	2.25e-12	0	0	0	0	1e-06	1e-12	
4	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	4.5e-06	2.025e-11	0	0	0	
6	0	0	0	0	0	0	0	0	0	
7	1	1	0	0	1e-05	1e-10	0	0	0	
8	0	1.5e-06	2.25e-12	1	0.999991	8.1e-11	0	0	0	
9	0	0	0	0	2.5e-06	6.25e-12	1	0.999999	1e-12	

In Table S6, all data is utilized to test the BPNN 1. The $(I - I_0)/I_0$, τ_{PL} and τ_P values of **1-Nme**, **1-Eme**, **1-Mme**, **1-Ede**, **1-TFc**, **1-HCl** and **1** as input information are inputted in the input column of the BPNN 1. Through the BPNN 1 calculation, various values (0-1) can be outputted, in which the values close to "0" represents the false test object, the values close to "1" represents the correct test object. By comparing the OV with CV, the variance can be obtained, which suggests that the BPNN 1 has a good accuracy for classifying six LVCs.

Table S7	. The summary	y of input and	output info	rmation in rea	al batch calcul	ation during the	e test of
BPNN 1.							

Input data			Output data						
(I - I ₀)/I ₀	τ _{PL}	τ _P	Nme	Eme	Mme	Ede	TFc	HCI	Blank
0.405	487.91	476.02	0.999991	0	0	0	1.5e-06	0	1e-06
0.665	485.97	543.56	9e-06	1	0	0	0	0	0
1.108	471.09	1029.62	0	0	1	0	0	4.5e-06	0
2.81	573.99	595.84	0	0	0	1	0	0	0
-0.162	266.1	393.47	1.3e-05	0	0	0	1	1e-05	0
-0.674	97.17	594.05	0	0	0	0	1.5e-06	0.999991	0
0	261.8	1140.08	0	0	0	0	0	2.5e-06	0.999999

In Table S7, all data is utilized to test the BPNN 1. The $(I - I_0)/I_0$, τ_{PL} and τ_P values of **1-Nme**, **1-Eme**, **1-Mme**, **1-Ede**, **1-TFc**, **1-HCl** and **1** as input information are inputted in the input column of the BPNN 1. Through the BPNN calculation, various values (0-1) can be acquired, in which the values close to "0" represents the false test object, and the values close to 1 represents the correct test object.

Table S8. The matlab code of this BPNN 1.

Matlab code
function [f00, f01, f02, f03, f04, f05, f06] = MPredict(f10, f11, f12)
fi0 = (fi0 - (-0.7094736842105264 + 2.9578947368421056) / 2.0) /(2.9578947368421056 - (-0.7094736842105264 + 2.9578947368421056) / 2.0);
fi1 = (fi1 - (92.311499999999952 + 604.200000000000455) / 2.0) /(604.200000000000455 - (92.311499999999952 + 604.200000000000455) / 2.0);
fi2 = (fi2 - (373.79649999999999804 + 1200.0842105263157009) / 2.0) /(1200.0842105263157009 - (373.796499999999804 + 1200.0842105263157009) / 2.0);
fWei0 = 1.10505;
fWei1 = 2.12914;
fWei2 = 0.548921;
fWei3 = 0.594116;
fWei4 = 1.89517;
fWei5 = 1.73458;
fWei6 = 1.3717;

fWei7 = -0.266689; fWei8 = 2.53372; fWei9 = 0.278359; fWei10 = 0.0674679; fWei11 = 0.69116; fWei12 = -0.620052; fWei13 = 0.857591; fWei14 = 2.88918; fWei15 = 1.34636; fWei16 = 1.49494; fWei17 = -2.21909; fWei18 = 1.52444: fWei19 = 1.65937; fWei20 = 0.241452; fWei21 = 1.02473; fWei22 = -3.00139: fWei23 = 2.78147; fWei24 = 0.424472; fWei25 = -0.0287807; fWei26 = -0.219319; fWei27 = 1.03912; fWei28 = 0.370994; fWei29 = 0.237197; fWei30 = 3.82317; fWei31 = 1.31334; fWei32 = 1.98588; fWei33 = 1.21297; fWei34 = 29.3638; fWei35 = 4.67511; fWei36 = 0.587711: fWei37 = -0.282918; fWei38 = -0.273239; fWei39 = 2.69121; fWei40 = -1.40221; fWei41 = -90.5064; fWei42 = -36.3222; fWei43 = -553.569; fWei44 = 1.48272; fWei45 = 0.762762: fWei46 = -0.337677; fWei47 = 11.2883; fWei48 = -0.276754; fWei49 = 1.65234; fWei50 = 0.651955; fWei51 = 2.24245; fWei52 = -0.532953; fWei53 = 0.598986; fWei54 = -1.01524; fWei55 = -5.35487; fWei56 = 11.1918; fWei57 = -34.3962: fWei58 = -6.18197; fWei59 = 2.27025; fWei60 = 0.445497; fWei61 = 5.43375; fWei62 = -5.85281; fWei63 = 0.65994; fWei64 = -38.8956; fWei65 = 29.3379; fWei66 = 18.0049; fWei67 = 8.53059; fWei68 = 0.0529693; fWei69 = -5.50438; fWei70 = 1500; fWei71 = 620.194; fWei72 = 1500; fWei73 = 1500; fWei74 = 986.717; fWei75 = 1500;

fWei76 = 756.246;	
fWei77 = -38.346;	
fWei78 = 31.2211;	
fWei79 = 9.63353;	
fWei80 = 11.8137:	
fW/oi81 = .0.220654	
AN-:02 - 10.0440	
1002 - 10.0440,	
fWei83 = -10.986;	
fWei84 = -25.7457;	
fWei85 = -6.70965;	
fWei86 = 1.11416;	
fWei87 = 3.09921;	
fWei88 = -22.8434:	
fW/ei89 = 1 93863	
AN-:00 - 4.21200;	
Twei90 = -4.21398;	
twei91 = 5.55457;	
fWei92 = 24.7463;	
fWei93 = 0.5815;	
fWei94 = 8.93692;	
fWei95 = -17.4828;	
fWei96 = 0.643751:	
fWei97 = -14 6922	
fWei08 = 16 0808	
10000 - 10.9090,	
fWei99 = 0.877639;	
fWei100 = -14.8437;	
fWei101 = 3.52038;	
fWei102 = 15.3328;	
fWei103 = 16.407;	
fWei104 = -12.4436;	
f0 = f10:	
f1 = fl1:	
fa - fia.	
12 = 112;	
f3 = 1.0;	
f4 = 0.0;	
f5 = 0.0;	
f6 = 0.0;	
f7 = 0.0;	
f8 = 0.0;	
f4 = f4 + f0 * fWei0	
$f_A = f_A + f_1 * f_1 N_{O}(1)$	
14 - 14 + 11 * 100 e11,	
t4 = t4 + t2 * twei2;	
f4 = f4 + f3 * fWei3;	
f4 = f4 * 0.5;	
f4 = (2.0 / (1.0 + exp(-2.0 * f4))	- 1.0);
f5 = f5 + f0 * fWei4;	
f5 = f5 + f1 * fWei5;	
f5 = f5 + f2 * fWei6:	
f5 = f5 + f3 * fWoi7:	
fr = fr * 0 r	
15 = 15 * 0.5;	
T5 = (2.0 / (1.0 + exp(-2.0 + T5)))	- 1.0);
f6 = f6 + f0 * fWei8;	
f6 = f6 + f1 * fWei9;	
f6 = f6 + f2 * fWei10;	
f6 = f6 + f3 * fWei11;	
f6 = f6 * 0.5;	
$f_6 = (2.0 / (1.0 + exp(-2.0 * f_6)))$	- 1 0).
f7 = f7 + f0 * fWoi12	1.0,,
17 = 17 + 10 · 100e112,	
t/=t/+t1*tWei13;	
f7 = f7 + f2 * fWei14;	
f7 = f7 + f3 * fWei15;	
f7 = f7 * 0.5;	
f7 = (2.0 / (1.0 + exp(-2.0 * f7))	- 1.0);
f8 = f8 + f0 * fWei16;	
f8 = f8 + f1 * fWei17:	
f8 = f8 + f2 * fWei18	
$f0 = f0 \pm f2 + f1/ci10$	
10 - 10 + 13 1 Wei19;	
ιδ = T8 ⁻ U.5;	
f8 = (2.0 / (1.0 + exp(-2.0 * f8))	- 1.0);

f10 = 0.0; f11 = 0.0; f12 = 0.0; f13 = 0.0; f14 = 0.0; f15 = 0.0; f10 = f10 + f4 * fWei20; f10 = f10 + f5 * fWei21; f10 = f10 + f6 * fWei22; f10 = f10 + f7 * fWei23; f10 = f10 + f8 * fWei24; f10 = f10 + f9 * fWei25; f10 = f10 * 0.5; f10 = (2.0 / (1.0 + exp(-2.0 * f10))- 1.0); f11 = f11 + f4 * fWei26; f11 = f11 + f5 * fWei27; f11 = f11 + f6 * fWei28; f11 = f11 + f7 * fWei29; f11 = f11 + f8 * fWei30; f11 = f11 + f9 * fWei31; f11 = f11 * 0.5; f11 = (2.0 / (1.0 + exp(-2.0 * f11))- 1.0); f12 = f12 + f4 * fWei32; f12 = f12 + f5 * fWei33; f12 = f12 + f6 * fWei34; f12 = f12 + f7 * fWei35; f12 = f12 + f8 * fWei36; f12 = f12 + f9 * fWei37; f12 = f12 * 0.5; f12 = (2.0 / (1.0 + exp(-2.0 * f12))- 1.0); f13 = f13 + f4 * fWei38; f13 = f13 + f5 * fWei39; f13 = f13 + f6 * fWei40; f13 = f13 + f7 * fWei41; f13 = f13 + f8 * fWei42; f13 = f13 + f9 * fWei43; f13 = f13 * 0.5; f13 = (2.0 / (1.0 + exp(-2.0 * f13))- 1.0); f14 = f14 + f4 * fWei44; f14 = f14 + f5 * fWei45; f14 = f14 + f6 * fWei46; f14 = f14 + f7 * fWei47; f14 = f14 + f8 * fWei48; f14 = f14 + f9 * fWei49; f14 = f14 * 0.5; f14 = (2.0 / (1.0 + exp(-2.0 * f14))- 1.0); f15 = f15 + f4 * fWei50; f15 = f15 + f5 * fWei51; f15 = f15 + f6 * fWei52; f15 = f15 + f7 * fWei53; f15 = f15 + f8 * fWei54: f15 = f15 + f9 * fWei55; f15 = f15 * 0.5; f15 = (2.0 / (1.0 + exp(-2.0 * f15))- 1.0); f16 = 1.0; f17 = 0.0; f18 = 0.0; f19 = 0.0; f20 = 0.0; f21 = 0.0; f22 = 0.0; f23 = 0.0; f17 = f17 + f10 * fWei56; f17 = f17 + f11 * fWei57; f17 = f17 + f12 * fWei58; f17 = f17 + f13 * fWei59; f17 = f17 + f14 * fWei60; f17 = f17 + f15 * fWei61; f17 = f17 + f16 * fWei62;

f17 = f17 * 0.5; f17 = (2.0 / (1.0 + exp(-2.0 * f17))- 1.0); f18 = f18 + f10 * fWei63; f18 = f18 + f11 * fWei64; f18 = f18 + f12 * fWei65: f18 = f18 + f13 * fWei66; f18 = f18 + f14 * fWei67; f18 = f18 + f15 * fWei68; f18 = f18 + f16 * fWei69; f18 = f18 * 0.5; f18 = (2.0 / (1.0 + exp(-2.0 * f18))- 1.0); f19 = f19 + f10 * fWei70: f19 = f19 + f11 * fWei71; f19 = f19 + f12 * fWei72; f19 = f19 + f13 * fWei73; f19 = f19 + f14 * fWei74: f19 = f19 + f15 * fWei75; f19 = f19 + f16 * fWei76; f19 = f19 * 0.5; f19 = (2.0 / (1.0 + exp(-2.0 * f19))- 1.0); f20 = f20 + f10 * fWei77: f20 = f20 + f11 * fWei78; f20 = f20 + f12 * fWei79; f20 = f20 + f13 * fWei80; f20 = f20 + f14 * fWei81; f20 = f20 + f15 * fWei82; f20 = f20 + f16 * fWei83; f20 = f20 * 0.5: f20 = (2.0 / (1.0 + exp(-2.0 * f20))- 1.0); f21 = f21 + f10 * fWei84: f21 = f21 + f11 * fWei85; f21 = f21 + f12 * fWei86; f21 = f21 + f13 * fWei87; f21 = f21 + f14 * fWei88; f21 = f21 + f15 * fWei89; f21 = f21 + f16 * fWei90; f21 = f21 * 0.5: f21 = (2.0 / (1.0 + exp(-2.0 * f21))- 1.0); f22 = f22 + f10 * fWei91; f22 = f22 + f11 * fWei92; f22 = f22 + f12 * fWei93; f22 = f22 + f13 * fWei94; f22 = f22 + f14 * fWei95; f22 = f22 + f15 * fWei96; f22 = f22 + f16 * fWei97; f22 = f22 * 0.5; f22 = (2.0 / (1.0 + exp(-2.0 * f22))- 1.0); f23 = f23 + f10 * fWei98; f23 = f23 + f11 * fWei99; f23 = f23 + f12 * fWei100; f23 = f23 + f13 * fWei101: f23 = f23 + f14 * fWei102; f23 = f23 + f15 * fWei103; f23 = f23 + f16 * fWei104; f23 = f23 * 0.5; f23 = (2.0 / (1.0 + exp(-2.0 * f23))- 1.0); fO0 = f17; fO1 = f18; fO2 = f19; fO3 = f20; fO4 = f21; fO5 = f22; fO6 = f23; fO0 = fO0 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0; fO1 = fO1 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0; fO2 = fO2 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0; fO3 = fO3 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0; fO4 = fO4 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0; fO5 = fO5 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0;

LVCs	Nme	Eme	Mme	Ede
Concentration range (ppm)	100-600	100-600	100-600	100-600
Linear relationship	/ = 15.7c + 22650	<i>I</i> = 5.8c + 3870	/=9.52c+3878	/ = 47.97c + 11667
Correlation coefficient (R ²)	0.992	0.994	0.994	0.993
Detection limit (DL)	34.23 ppm	25.34 ppm	11.65 ppm	4.74 ppm
Response time (s)	12	11	12	9
Cycle times	6	5	6	4
LVCs	TFc	HCI		
Concentration range (ppm)	100-600	100-600		
Linear relationship	/=-16.1c+13878	/=-48.26c+29225.8		
Correlation coefficient (R ²)	0.995	0.997		
Detection limit (DL)	12.62 ppm	2.54 ppm		
Response time (s)	4	3		
Cycle times	5	5		

Table S9. Summary of fluorescence sensing parameters of 1 for detecting Nme, Eme, Mme, Ede, TFc and HCl.

Table S10. Summary of input and output information during the training of BPNN 2 for recognizing the concentration of **Nme**.

Input (R.G.B value)	Output data (Concentration of Nme)					
I ₆₁₅ /I ₄₈₄	100 ppm	200 ppm	300 ppm	400 ppm	500 ppm	600 ppm
9.756	1	0	0	0	0	0
12.321	0	1	0	0	0	0
16.035	0	0	1	0	0	0
21.893	0	0	0	1	0	0
32.509	0	0	0	0	1	0
57.63	0	0	0	0	0	1

In Table S10, all data is used to training the BPNN 2. The I_{615}/I_{484} values of every concentration as input information are inputted in the input column of the BPNN 2. Various "0" and "1" inputted into the output column of the BPNN 2, in which "0" represents the false concentration, and "1" represents the correct concentration. All data is used to train the BPNN 2.

Table S11. Network structure	information	of BPNN 2.
------------------------------	-------------	------------

	Network structure i	nformation		
Input layer	1 neurons	1 Paranoid		
Hidden layer 1	6 neurons	1 Paranoid		
Output layer	6 neurons			
Network type	FANN_NETTYPE_LAYER			
Training function	FANN_TRAIN_RPROP			
Error function	FANN_ERRORFUNC_LINEAR			
Termination function	FANN_STOPFUNC_MSE			
lidden layer excitation function	FANN_SIGMOID_SYMMETRIC			
Output layer excitation function	FANN_SIGMOID_SYMMETRIC			
	Network weigh	t value		
Arrangement	Wire number	Output point (n)	Input point (m)	Weight value (W)
	0	0	2	13.4965
	1	1	2	8.5918
	2	0	3	1500
	3	1	3	-1500
	4	0	4	1500
	5	1	4	-1500
1	6	0	5	3.20266
	7	1	5	2.37858
	8	0	6	-9.7364
	9	1	6	-6.43768
	10	0	7	-0.0627362
	11	1	7	-1.62085
	12	2	9	0.767244
	13	3	9	2.97964
	14	4	9	2.48638
	15	5	9	-390.565
	16	6	9	162.721
	17	7	9	629.76
	18	8	9	163.872
2	19	2	10	-23.3227
	20	3	10	10.0919
	21	4	10	8.38097
	22	5	10	204.567
	23	6	10	120.699
	24	7	10	60.7321
	25	8	10	-7.57263
	26	2	11	-240 193

27	3	11	2.92093
28	4	11	4.84024
29	5	11	135.699
30	6	11	-168.156
31	7	11	97.1709
32	8	11	-0.886454
33	2	12	-46.5131
34	3	12	-52.9383
35	4	12	-52.9938
36	5	12	-373.813
37	6	12	-274.226
38	7	12	248.597
39	8	12	87.6538
40	2	13	206.085
41	3	13	-65.1376
42	4	13	-17.3287
43	5	13	-77.1919
44	6	13	10.2998
45	7	13	356.934
46	8	13	31.2925
47	2	14	127.591
48	3	14	254.148
49	4	14	108.609
50	5	14	87.0099
51	6	14	5.66207
52	7	14	-218.754
53	8	14	16.4265

Input / output column coefficients for manual calculation

Listing	Minimum	Maximum
I _{615/} I ₄₈₄	9.2682	60.6632
100 ppm	0	1
200 ppm	0	1
300 ppm	0	1
400 ppm	0	1
500 ppm	0	1
600 ppm	0	1

Deviation statistics: mean variance

Listing	All rows	Calculation line	Test line
100 ppm	0	0	0
200 ppm	5.40325e-07	5.40325e-07	0
300 ppm	6e-11	6e-11	0
400 ppm	0	0	0
500 ppm	8.70417e-11	8.70417e-11	0
600 ppm	8.68333e-11	8.68333e-11	0

1	Input item	10	00 ppm (MS	SE = 0)	2	00 ppm (MSE = !	5.40325e-07)	3	00 ppm (MSE =	= 6e-11)	40	00 ppm (M	SE = 0)
2	I _{615/} I ₄₈₄	ov	cv.	Var.	ov	cv.	Var.	ov	cv.	Var.	ov	cv.	Var.
3	9.756	1	1	0	0	0.0010565	1.11619e-06	0	0	0	0	0	0
4	12.321	0	0	0	1	0.998605	1.94603e-06	0	1e-05	1e-10	0	0	0
5	16.035	0	0	0	0	0.0004145	1.7181e-07	1	0.999984	2.56e-10	0	0	0
6	21.893	0	0	0	0	0	0	0	0	0	1	1	0
7	32.509	0	0	0	0	0	0	0	0	0	0	0	0
8	57.63	0	0	0	0	8.9e-05	7.921e-09	0	2e-06	4e-12	0	0	0

Table S12. The summary of mean square error (MSE), original value (OV), calculated value (CV), variance (Var.) of BPNN 2.

1		500 ppm (MSE = 8.70417e-11	L)	6	00 ppm (MSE = 8.68333e-1	1)
2	ov.	CV.	Var.	ov.	cv.	Var.
3	0	0	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0
6	0	4e-06	1.6e-11	0	0	0
7	1	0.999982	3.24e-10	0	2e-05	4e-10
8	0	1.35e-05	1.8225e-10	1	0.999989	1.21e-10

In Table S12, all data is utilized to test the BPNN 2. The I_{615}/I_{484} values of every concentration as input information are inputted in the input column of the BPNN 2. Through the BPNN 2 calculation, various values (0-1) can be outputted, in which the values close to "0" represents the false concentration, the values close to "1" represents the correct concentration. By comparing the OV with CV, the variance can be obtained, which suggests that the BPNN 2 has a good accuracy for detecting concentration.

Table S13. The summary of input and output information in real batch calculation during the test of BPNN 2.

Input item			Outpu	ıt data		
I _{615/} I ₄₈₄	100 ppm	200 ppm	300 ppm	400 ppm	500 ppm	600 ppm
9.756	1	0.0010565	0	0	0	0
12.321	0	0.998605	1e-05	0	0	0
16.035	0	0.0004145	0.999984	0	0	0
21.893	0	0	0	1	4e-06	0
32.509	0	0	0	0	0.999982	2e-05

57.63	0	8.9e-05	2e-06	0	1.35e-05	0.999989

In Table S13, all data is utilized to test the BPNN 2. The I_{615}/I_{484} values of every concentration as input information are inputted in the input column of the BPNN 2. Through the BPNN 2 calculation, various values (0-1) can be acquired, in which the values close to "0" represents the false concentration, and the values close to 1 represents the correct concentration.

	Table S14	The matl	ab code	of this	BPNN	2
--	-----------	----------	---------	---------	------	---

Matlab code
function [f00, f01, f02, f03, f04, f05] = MPredict(f10)
fl0 = (fl0 - (9.268200000000002 + 60.6631578947368482) / 2.0) /(60.6631578947368482 - (9.268200000000002 + 60.6631578947368482) / 2.0);
fWei0 = 13.4965;
fWei1 = 8.5918;
fWei2 = 1500;
fWei3 = -1500;
fWei4 = 1500;
fWei5 = -1500;
fWei6 = 3.20266;
fWei7 = 2.37858;
fWei8 = -9.7364;
fWei9 = -6.43768;
fWei10 = -0.0627362;
fWei11 = -1.62085;
fWei12 = 0.767244;
fWei13 = 2.97964;
fWei14 = 2.48638;
fWei15 = -390.565;
fWei16 = 162.721;
fWei17 = 629.76;
fWei18 = 163.872;
fWei19 = -23.3227;
fWei20 = 10.0919;
fWei21 = 8.38097;
fWei22 = 204.567;
fWei23 = 120.699;
fWei24 = 60.7321;
fWei25 = -7.57263;
fWei26 = -240.193;
fWei27 = 2.92093;
fWei28 = 4.84024;
fWei29 = 135.699;
fWei30 = -168.156;
fWei31 = 97.1709;
fWei32 = -0.886454;
fWei33 = -46.5131;
fWei34 = -52.9383;
fWei35 = -52.9938;
fWei36 = -373.813;
fWei37 = -274.226;
fWei38 = 248.597;
fWei39 = 87.6538;
fWei40 = 206.085;
fWei41 = -65.1376;
fWei42 = -17.3287;
fWei43 = -77.1919;
fWei44 = 10.2998;
fWei45 = 356.934;
fWei46 = 31.2925;
fWei47 = 127.591;
fWei48 = 254.148;
fWei49 = 108.609;
fWei50 = 87.0099;
fWei51 = 5.66207;
fWei52 = -218 754

fWei53 = 16.4265; f0 = fI0;f1 = 1.0; f2 = 0.0; f3 = 0.0; f4 = 0.0; f5 = 0.0; f6 = 0.0; f7 = 0.0; f2 = f2 + f0 * fWei0; f2 = f2 + f1 * fWei1; f2 = f2 * 0.5; f2 = (2.0 / (1.0 + exp(-2.0 * f2))- 1.0); f3 = f3 + f0 * fWei2; f3 = f3 + f1 * fWei3; f3 = f3 * 0.5: f3 = (2.0 / (1.0 + exp(-2.0 * f3))- 1.0); f4 = f4 + f0 * fWei4; f4 = f4 + f1 * fWei5; f4 = f4 * 0.5; f4 = (2.0 / (1.0 + exp(-2.0 * f4))- 1.0); f5 = f5 + f0 * fWei6; f5 = f5 + f1 * fWei7; f5 = f5 * 0.5; f5 = (2.0 / (1.0 + exp(-2.0 * f5))- 1.0); f6 = f6 + f0 * fWei8; f6 = f6 + f1 * fWei9; f6 = f6 * 0.5; f6 = (2.0 / (1.0 + exp(-2.0 * f6))- 1.0); f7 = f7 + f0 * fWei10; f7 = f7 + f1 * fWei11; f7 = f7 * 0.5; f7 = (2.0 / (1.0 + exp(-2.0 * f7))- 1.0); f8 = 1.0; f9 = 0.0; f10 = 0.0; f11 = 0.0: f12 = 0.0; f13 = 0.0: f14 = 0.0; f9 = f9 + f2 * fWei12; f9 = f9 + f3 * fWei13; f9 = f9 + f4 * fWei14; f9 = f9 + f5 * fWei15; f9 = f9 + f6 * fWei16; f9 = f9 + f7 * fWei17; f9 = f9 + f8 * fWei18; f9 = f9 * 0.5; f9 = (2.0 / (1.0 + exp(-2.0 * f9))- 1.0); f10 = f10 + f2 * fWei19; f10 = f10 + f3 * fWei20; f10 = f10 + f4 * fWei21; f10 = f10 + f5 * fWei22; f10 = f10 + f6 * fWei23; f10 = f10 + f7 * fWei24; f10 = f10 + f8 * fWei25; f10 = f10 * 0.5; f10 = (2.0 / (1.0 + exp(-2.0 * f10))- 1.0); f11 = f11 + f2 * fWei26; f11 = f11 + f3 * fWei27; f11 = f11 + f4 * fWei28; f11 = f11 + f5 * fWei29; f11 = f11 + f6 * fWei30; f11 = f11 + f7 * fWei31; f11 = f11 + f8 * fWei32; f11 = f11 * 0.5; f11 = (2.0 / (1.0 + exp(-2.0 * f11))- 1.0); f12 = f12 + f2 * fWei33; f12 = f12 + f3 * fWei34;

f12 = f12 + f4 * fWei35; f12 = f12 + f5 * fWei36; f12 = f12 + f6 * fWei37; f12 = f12 + f7 * fWei38; f12 = f12 + f8 * fWei39; f12 = f12 * 0.5; f12 = (2.0 / (1.0 + exp(-2.0 * f12))- 1.0); f13 = f13 + f2 * fWei40; f13 = f13 + f3 * fWei41; f13 = f13 + f4 * fWei42; f13 = f13 + f5 * fWei43; f13 = f13 + f6 * fWei44; f13 = f13 + f7 * fWei45; f13 = f13 + f8 * fWei46; f13 = f13 * 0.5; f13 = (2.0 / (1.0 + exp(-2.0 * f13))- 1.0); f14 = f14 + f2 * fWei47; f14 = f14 + f3 * fWei48; f14 = f14 + f4 * fWei49; f14 = f14 + f5 * fWei50; f14 = f14 + f6 * fWei51; f14 = f14 + f7 * fWei52; f14 = f14 + f8 * fWei53; f14 = f14 * 0.5; f14 = (2.0 / (1.0 + exp(-2.0 * f14))- 1.0); fO0 = f9; fO1 = f10; fO2 = f11; fO3 = f12; fO4 = f13; fO5 = f14; fO0 = fO0 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0; fO1 = fO1 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0; fO2 = fO2 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0; fO3 = fO3 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0; fO4 = fO4 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0; fO5 = fO5 * (1 - (0 + 1) / 2.0) + (0 + 1) / 2.0;