Electronic Supplementary Information for

Synergetic Catalysis of *p-d* Hybridized Single-atom Catalysts: First-principles Investigations

Meng Deng[#], Mengjiao Xia[#], Yueyang Wang, Xiaoyan Ren^{*} and Shunfang Li^{*}

Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China.

This file includes:

 Table S1 Lattice parameter and pore size of TM-HHB Monolayer.

Table S2 Bond lengths of each part of the structure when O₂ and CO are adsorbed.

Fig. S1 MEP for the incoming CO molecule directly attacks the oxygen atom bonded with the Cr-SA site.

Fig. S2 Minimum energy pathways (MEP) and corresponding energy barriers (E_{bar}) for CO oxidation via L-H and E-R mechanism on 2D Cr-HHB without Hubbard U correction ($U_{eff} = 0$ eV). For the second round of CO oxidation, the initial state (termed IS₂) is based on the FS₁ with releasing the CO₂ molecule.

Fig. S3 LPDOS of the CO and O_2 molecules about 5 Å above the Ni-HHB monolayer are also presented in blue and red solid lines, with the Fermi levels shifted to zero.

Fig. S4 Charge transfer evolution of the key steps presented in the TER process of CO oxidation on Ni-HHB.

Fig. S5 (a) Minimum energy pathways (MEP) and corresponding energy barriers (E_{bar}) for CO oxidation via E-R and L-H mechanism on 2D Mo-HHB. For the second round of CO oxidation, the initial state (termed IS₂) is based on the FS₁ with releasing the CO₂ molecule. Evolution of the ΔQ in the key steps presented in the L-H processes of (b) the first and (c) the second round of CO oxidation on Mo-HHB.

ТМ-ННВ	Cr	Mn	Fe	Со	Ni	Cu	Мо	Ru	Rh	Pd	Ag	Pt	Au
Lattice (Å)	13.66	13.91	13.69	13.63	12.99	13.25	14.06	13.73	13.6	13.46	15.01	13.52	14.00
D _M (Å)	6.83	6.93	6.85	6.82	6.50	6.63	7.03	6.86	6.80	6.73	7.50	6.76	7.00
D _P (Å)	13.66	13.91	13.69	13.63	12.99	13.25	14.06	13.73	13.6	13.46	15.01	13.52	14.00

 Table S1 Lattice parameter and pore size of TM-HHB Monolayer.

Table S2 Bond lengths of each part of the structure when O_2 and CO are adsorbed.

TM-HH	Cr	Mn	Fe	Со	Ru	Rh	Ni	Cu	Мо	
Adsorption of O2	O2-TM (Å)	1.98	2.13	1.96	2.03	1.94	2.00	2.89	2.62	1.93
	O2-C (Å)	3.23	2.41	2.13	2.52	3.20	3.14	2.89	2.60	
	O-O (Å)	1.28	1.29	1.33	1.28	1.28	1.27	1.24	1.26	1.48
Advantion of CO	C-TM (Å)	2.40	2.31	2.03	1.96	1.78	1.84	1.84	1.80	2.02
Ausorption of CO	C-O (Å)	1.14	1.14	1.15	1.14	1.17	1.16	1.15	1.15	1.16

Fig. S1 MEP for the incoming CO molecule directly attacks the oxygen atom bonded with the Cr-SA site.

Fig. S2 Minimum energy pathways (MEP) and corresponding energy barriers (E_{bar}) for CO oxidation via L-H and E-R mechanism on 2D Cr-HHB without Hubbard U correction ($U_{eff} = 0$ eV). For the second round of CO oxidation, the initial state (termed IS₂) is based on the FS₁ with releasing the CO₂ molecule.

Fig. S3 LPDOS of the CO and O_2 molecules about 5 Å above the Ni-HHB monolayer are also presented in blue and red solid lines, with the Fermi levels shifted to zero.

Fig. S4 Charge transfer evolution of the key steps presented in the TER process of CO oxidation on Ni-HHB.

Fig. S5 (a) Minimum energy pathways (MEP) and corresponding energy barriers (E_{bar}) for CO oxidation via E-R and L-H mechanism on 2D Mo-HHB. For the second round of CO oxidation, the initial state (termed IS₂) is based on the FS₁ with releasing the CO₂ molecule. Evolution of the ΔQ in the key steps presented in the L-H processes of (b) the first and (c) the second round of CO oxidation on Mo-HHB.