Simplified Fast Synthesis of Strong-Coupling Composite Supercapacitor Materials by One-Step Bipolar Pulse Electrodeposition

Hao Liu^a, Haochang Chen^a, Shunzhe Zhang^a, Kaifeng Wang^a, Lei Yang^{a,b,*}, Yujie Chen^a, Hezhou Liu^a, Hua Li^{a,b,*}

^aState Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
^bNational Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

*Corresponding author

E-mail address: yanglei1983@sjtu.edu.cn (Lei Yang), lih@sjtu.edu.cn (Hua Li)

electrode	Step one (The	Step two (The	Step three (The	references	
materials	required time)	required time)	required time)		
This work	NiCoS/PPy				
	(2400 s)				
NiCo ₂ S ₄ @PPy/C	NiCo ₂ S ₄ /NF	NiCo ₂ S ₄ @PPy/N			
F	(12+14 h)	F (90 s)		1	
Co ₉ S ₈ @PPy@Ni	Co ₉ S ₈ on CC	layer of PPy	Electrodeposition	1	
Co-LDH NTAs	(10+6 h)	(3 h)	NiCo-LDH	2	
NiCo ₂ S ₄ @PPy	NiCo ₂ S ₄	NiCo ₂ S ₄ @PPy		3	
	(6+7 h)	(9 h)			
PPy@NiCo ₂ S ₄	PPy nanotubes	PPy@SiO ₂ NTs	Ppy@NiCo ₂ S ₄ core	e- 4	
	(12 h)	(3 h)	shell (12+12 h)		
PPy@NiCo ₂ S ₄ /G	NiCo ₂ S ₄ /GF	PPy@NiCo ₂ S ₄ /G		5	
F	(8+12 h)	(24 h)			
CoNi ₂ S ₄ @PPy/N	CoNi ₂ S ₄ /N-3DG	CoNi ₂ S ₄ @PPy/N		6	
-3DG	(4+10 h)	-3DG (10 min)		~	
NiCoS@PPy	PPy tubes	ZIF-67@PPy	NiCoS@Ppy	7	
	(24 h)	(24 h)	(4 h)		

Table S1 Comparison of preparation steps and time of various NiCoS/Ppy with

different structure designs.

NiCo-	PPy nanotubes	NiCo-		
MOF@PPy	(24 h)	MOF@Ppy		8
		(8 h)		
NiCo ₂ S ₄ @PPy-	NiCo ₂ S ₄ -Ni foam	NiCo ₂ S ₄ @PPy-		
Ni foam	(8+12 h)	Ni foam		9
		(12 h)		
CNS/PPy/CP	S@PPy	CNS/PPy/CP		10
		(4000 s)		

Fig. S1. Mechanism of electro polymerization of pyrrole.

Fig. S2. The potential-time curve after stabilization of NCS/P-3.

Fig. S3. The potential-time curve during the preparation of NCS/P-1 (a), and the potential-time curve after stabilization of NCS/P-1 (b).

Fig. S4. The potential-time curve during the preparation of NCS/P-2 (a), and the potential-time curve after stabilization of NCS/P-2 (b).

Fig. S5. The potential-time curve during the preparation of NCS/P-4 (a), and the potential-time curve after stabilization of NCS/P-4 (b).

Fig. S6. SEM images of (a) NCS/P-1, SEM section images of (b) NCS/P-1.

Fig. S7. SEM images of (a-b) NCS/P-2, SEM section images of (c) NCS/P-2.

Fig. S8. SEM images of (a) NCS/P-4, SEM section images of (b) NCS/P-4.

Fig. S9. SEM images of (a) Pure PPy, SEM section images of (b) Pure PPy.

Fig. S10. The GCD at various current density of (a) NCS/P-1, (b) NCS/P-2, (c) NCS/P-3, (d) NCS/P-4.

Fig. S11. The specific capacitance of electrodes at various scan rates.

Fig. S12. The GCD at 5 A g^{-1} of pure PPy electrode (a), and the cycling performance of pure PPy electrode at the current density of 10 A g^{-1} (b).

Fig. S13. Log (i) as a function of log (v) of (a) NCS/P-1, (b) NCS/P-2, (c) NCS/P-4. The contribution fractions of the capacitive and diffusion-controlled processes of (d) NCS/P-1, (e) NCS/P-2, (f) NCS/P-4.

Reference:

- M. Yan, Y. Yao, J. Wen, L. Long, M. Kong, G. Zhang, X. Liao, G. Yin and Z. Huang, ACS Appl Mater Interfaces, 2016, 8, 24525-24535.
- L. Wang, S. K. Li, F. Z. Huang, X. Y. Yu, M. J. Liu and H. Zhang, *Journal of Power Sources*, 2019, 439.
- J. Li, Y. J. Zou, B. Li, F. Xu, H. L. Chu, S. J. Qiu, J. Zhang, L. X. Sun and C. L. Xiang, *Ceramics International*, 2021, 47, 16562-16569.
- 4. Y. Y. Zheng, J. Xu, X. S. Yang, Y. J. Zhang, Y. Y. Shang and X. Y. Hu, *Chemical Engineering Journal*, 2018, **333**, 111-121.
- Y. F. Zhu, F. F. Wang, H. L. Zhang, X. B. Lv, Z. F. Hu, H. Han, X. Y. Fan, J. Y. Ji and X. D. Guo, *Journal of Alloys and Compounds*, 2018, 747, 276-282.

- B. Liu, R. W. Mo, D. Z. Kong, Y. Wang and H. Y. Yang, *Flatchem*, 2017, 6, 1-10.
- X. Y. Zhao, Q. X. Ma, K. Tao and L. Han, *Acs Applied Energy Materials*, 2021,
 4, 4199-4207.
- 8. Y. X. Liu, Y. Z. Wang, Y. J. Chen, C. Wang and L. Guo, *Applied Surface Science*, 2020, **507**.
- X. Wu, L. Meng, Q. Wang, W. Zhang and Y. Wang, *Chemical Engineering Journal*, 2019, 358, 1464-1470.
- X. Li, W. Yan, S. Guo, Y. Liu, J. Niu, L. Yin and Z. Wang, *Electrochimica Acta*, 2021, 387.