Supplementary Information

CNT Encapsulated MnO_x for Enhanced Flow-Through Electro-Fenton:

The Involvement of Mn(IV)

Dongli Guo^a, Shengtao Jiang^b, Limin Jin^a, Kui Huang^{c*}, Ping Lu^d, Yanbiao Liu^{a, e*}

^a Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China. E-mail: yanbiaoliu@dhu.edu.cn, Tel: +86 21 67798752.

^b College of Life Science, Taizhou University, Taizhou 318000, China.

^c School of Resources, Environment and Materials, Guangxi University, 100 Daxue Road, Nanning 530004, China. E-mail: khuang@gxu.edu.cn.

^{*d*} Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China.

^e Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.

Supplementary Information: 5 Texts, 5 Tables, and 22 Figures

Table of Contents

Text S1 Reagents and materials
Text S2 Preparation of MnO _x -in-CNT and MnO _x -out-CNT filtersS4
Text S3 Calculation of H ₂ O ₂ fluxS5
Text S4 Computational methodsS5
Text S5 Calculation of energy consumptionS6
Table S1 HPLC operation parameters for different substrates. S7
Table S2 Comparison of the BPA degradation efficiency in the proposed system with
reported literature
Table S3 Comparison of the performance of the proposed system with reported Mn-
based catalysts
Table S4 Quality parameters of different water. S10
Table S5 Chemicals used as model organic pollutantsS11
Fig. S1 Schematic representation of the flow-through electroactive filtration reactor.
Fig. S2 Schematic illustration of the flow-through electro-Fenton systemS13
Fig. S3 HRTEM image of MnO _x -in-CNT filterS14
Fig. S4 (a) TEM image of CNT with closed tip; (b) TEM image of MnO_x -out-CNT filter
(Inset) HRTEM image of MnO_x nanoparticles; (c) HAADF-STEM image of MnO_x -out-CNT
filter; (d) EDS mapping pattern with C, O, and Mn elements overlapping together; EDS
elemental mapping of (d) C, (e) O, and (f) MnS15
Fig. S5 (a) XPS wide scan survey spectra and (b) high-resolution Mn 2p spectra of
different catalystsS16
Fig. S6 XRD patterns of CNT, MnO _x -in-CNT, and MnO _x -out-CNTS17
Fig. S7 N_2 adsorption–desorption isotherms of MnO_x -out-CNT and MnO_x -in-CNTS18
Fig. S8 CV curves of CNT filter in O_2 - and N_2 -saturated 50 mM Na_2SO_4 solutionS19
Fig. S9 Effect of MnO _x loading on BPA degradationS20
Fig. S10 Zeta potential of MnO _x versus solution pHS21
Fig. S11 Effect of (a) DO and (b) flow rate on BPA degradationS22

Fig. S12 Decline of PMSO and production of \ensuremath{PMSO}_2 in the $\ensuremath{MnOx-in-CNT}$ electro-
Fenton system
Fig. S13 XPS spectrogram and the fitting peak of Mn 2p of after used MnO_x -in-CNT
filter
Fig. S14 Mass spectrum of BPA and intermediates during the BPA removal in MnO_x -in-
CNT electro-Fenton system
Fig. S15 (a) The geometrical structure of BPA, (b) electrostatic potential (ESP) map of
BPA, and (c) natural population analysis (NPA) charge distribution and Fukui index of
BPA
Fig. S16 TOC removal in the MnO _x -in-CNT electro-Fenton system
Fig. S17 Effect of co-existing substrates on the degradation of BPA by MnO_x -in-CNT
electro-Fenton system
Fig. S18 Effect of different water matrices on the degradation of BPA
Fig. S19 The performance of trace BPA degradation in the MnO_x -in-CNT electro-Fenton
systemsS30
Fig. S20 Degradation of various organic pollutants in the MnO_x -in-CNT electro-Fenton
systemS31
Fig. S21 A comparison of BPA degradation stability and leached total Mn
concentration of the MnO_x -in-CNT or MnO_x -out-CNT electro-Fenton systemsS32
Fig. S22 Flow path of the MnO _x -in-CNT electro-Fenton systemS33
References

Text S1 Reagents and materials

Bisphenol A (BPA, >99.8%), sulfamethoxazole (SMX, 98.0%), 2,4,6-trichlorophenol (2,4,6-TCP, 98.0%), 4-chlorophenol (4-CP, ≥99%), phenol (99%), aniline (≥99%), methylene blue (MB, \geq 97.0%), rhodamine B (RhB, \geq 99%), benzoic acid (BA, 99.5%), 2,2,6,6-tetramethylpiperidine (TEMP, ≥98.0%), 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO, 97.0%), pyrophosphate (PP, 99.0%), and methyl phenyl sulfoxide (PMSO, >98.0%) were obtained from Shanghai Aladdin Biological Technology Co., Ltd. (China). $Mn(NO_3)_2$ (50%, w/w aq.) was purchased from Alfa Aesar Chemical Reagent Co., Ltd. (China). Nitric acid (HNO₃, 65.0~68.0%), sodium hydroxide (NaOH, ≥96.0%), sodium silicate (Na₂SiO₃·9H₂O, \geq 98.0%), sodium chloride (NaCl, \geq 98.0%), sodium sulfate $(Na_2SO_4, \ge 99.0\%)$, sodium nitrate $(NaNO_3, \ge 98.5\%)$, levofloxacin (LFX), furfuryl alcohol (FFA, \geq 98.5%), *tert*-butyl alcohol (TBA, \geq 98.0%), *p*-benzoquinone (*p*-BQ, \geq 98.0%), tetracycline (TC, \geq 98.0%), and ethanol (\geq 96.0%) were purchased from Sinopharm Chemical Reagent Co. Ltd. (China). Methanol (≥99.9%), phosphoric acid, formic acid and acetonitrile (≥99.9%, chromatographic grade) were purchased from Titan Scientific Co., Ltd. (China). Multiwalled carbon nanotubes (CNTs) (<d> = 10-20 nm and <I> = 0.5-2.0 μ m) were supplied by Nanjing XFNANO Materials Tech Co., Ltd. (China). All chemical reagents were used without any purification. Lake water, pharmaceutical wastewater and waste water treatment plant secondary effluent was collected from the Jingyue Lake of Donghua university campus, a hospital, and a waste water treatment plant of Shanghai, respectively. The wastewater characteristics were available in Table S1. Ultrapure water (resistivity \geq 18.2 M Ω cm) was used in all experiments.

Text S2 Preparation of MnO_x-in-CNT and MnO_x-out-CNT filters

The MnO_x nanoparticles were introduced into the CNT channels by a wetchemistry method.¹ The detailed prepared processes are described as follows. Raw CNTs (<d> = 10-20 nm and <l> = 0.5-2.0 μ m, purchased from Xianfeng Nano Co. Ltd.) were first opened up by refluxing in HNO₃ (65~68 wt. %) at 140 °C for 14 h. The metal catalyst residues were removed during this process. The resulting CNT were immersed into an aqueous Mn(NO₃)₂ solution, which was introduced into the CNT channels utilizing the capillary forces of CNT aided by ultrasonic treatment and stirring. After the resulting slurry mixture was dried at room temperature, it was gradually heated to 210°C and held for 1 h. By this process, $Mn(NO_3)_2$ decomposes into MnO_x and the obtained sample is denoted as MnO_x -in-CNT.

For comparison, the same loadings of MnO_x were deposited on the outer surface of carbon nanotubes by impregnating CNT with aqueous $Mn(NO_3)_2$ solution. These CNT with closed caps were obtained by refluxing raw CNT in 37 wt. % HNO₃ solution at 110°C for 5 h. Then, MnO_x -out-CNT was obtained after the same drying procedure.

The hybrid filters and pristine CNT filter can be fabricated by a facile vacuum filtration route. Briefly, 30 mg of MnO_x -out-CNT, MnO_x -in-CNT or CNT powders were dispersed into 40 mL N-mmethyl-2-pyrrolidinone (NMP) and probe-sonicating for 40 min (100 W, LABSONIC[®] M, Sartorius) to achieve a homogeneous suspension solution. The mixture was then vacuum-filtered onto a polytetrafluoroethylene (PTFE) membrane and washed sequentially with 100 mL of ethanol and 200 mL of DI-H₂O before use.

Text S3 Calculation of H₂O₂ flux

The H_2O_2 flux was evaluated in the absence of BPA, and the result was calculated by the following equation:²

$$H_2O_2 Flux = \frac{(H_2O_2)(mmol/L) \times flow rate(L/h)}{effective filter area (m^2)}$$
(1)

where an *Effective filter area* represents the area that is permeable to a solution *i.e.*, 7.1×10^{-4} m².

Text S4 Computational methods

A CNT model with C-C bond length of 1.42 Å was constructed. The MnO_x cluster was constructed, and the structure was taken from Mn₅O₈, as it encompasses both trivalent and tetravalent Mn. The MnO_x was placed inside and outside the CNT, respectively, thus constituting the confined and unconfined model with a cell size of 19.62 × 17.22 × 36.27 and α , β , γ all at 90°. CP2K 8.1³ was used for the geometric optimization of the configuration and single-point energy calculations. The theoretical method was PBE⁴ and the basis group was DZVP-MOLOPT-SR-GTH.⁵ The OT

acceleration algorithm, DFT-D3 (BJ)⁵,⁶ correction was used. In addition, Broyden mixing as density matrix mixing method were applied. Since the system already has more than 15 Å in the XYZ direction, only one Γ point was needed. The SCF convergence limit is set as 5×10^{-6} , and the cutoff and REL cutoff were set as 400 and 55 Ry, respectively. The binding energy is calculated according to the following formula:

$$E = (E_{product} - \sum n_i * E_{atom_i})/n$$
(2)

where E is the binding energy, $E_{product}$ is the energy of the product, which refers to the energy of the CNT binding the corresponding configurations such as H_2O_2 , Mn(IV), HO^{\bullet} , $O_2^{\bullet-}$, *etc.*, E_{atom_i} is the energy of the atom i that constitutes the product, n_i is the number of i atoms, and n is the total number of atoms in the product.

The ab initio calculations were conducted using the Gaussian 09 package.⁷ The geometry optimization and frequency calculation for the BPA molecule were carried out at the B3LYP/6-311G* level. The Fukui functions representing the electrophilic (f^{-}) were applied to unveil the active sites of the BPA molecule by Multiwfn.⁸

Text S5 Calculation of energy consumption

The energy consumption was calculated in terms of per volume treated water (kW h/m^3) or the removal of per gram BPA from the simulated wastewater sample (kW h/g):⁹

energy consumption^[70] (kW h m⁻³) =
$$\frac{1000 \text{Ult}}{\text{V}_0}$$
 (3)

energy consumption (kW h g⁻¹ BPA) =
$$\frac{\text{UIt}}{(C_0 - C_t)V_0}$$
 (4)

where *U* is the applied voltage (V), *I* is the applied current (A), *t* represents the treatment time (h), V_0 denotes the solution volume (L), C_0 and C_t are the BPA concentration in the solution (mg L⁻¹) at time *0* and *t*, respectively. Here, the electric energy consumption is converted accordingly to U.S. environmental prices (US\$) and the average electricity price is 14.31 cents per kWh (June, 2022).

Substrates	Methanol	Acetonitrile	DI (0.1%	DI	Detection	Flow rate
			phosphori		wavelength	(mL min ⁻¹)
			c acid)		(nm)	
BPA	70	-	-	30	230	1.0
SMX	30	-	70	-	300	1.0
4-CP		40		60	210	1.0
2,4,6-TCP	-	70	30	-	294	1.0
TC		70	30		280	0.5
LFX	-	85	15	-	293	1.0
phenol	60	-	40	-	270	1.0
aniline	40	-		60	230	0.5
BA		15		85	270	0.5
PMSO		20		80	230	0.8
PMSO ₂		20		80	215	0.8

Table S1 HPLC operation parameters for different substrates.

Materials	BPA	Oxidant	Reaction	рН	Removal	References
	concentration		time		efficiency	
nFe ₂ O ₃ /MIL-	0.044 mM (10	H _a O _a	120 min	5.0	77 2%	10
53(Cu)	mg L ⁻¹)	11202	120 1111	5.0	77.270	10
RGO-CeO ₂ -TNAs	0.044 mM (10	H ₂ O ₂	120 min	5.0	81.8%	11
	mg L^{-1})	11202	120 11111		01.070	11
AlgCMC-Fe	0.022 mM (5	HaOa	240 min	7.0	87.0%	12
	mg L ^{−1})	11202	240 1111	7.0	07.070	
Co ₃ O ₄ hollow	0.175 mM (40	nersulfate	100 min	6.0	01 0%	13
nanospheres	mg L^{-1})	persunate	100 11111	0.0	51.070	13
Cu(0.05)-AIPO ₄	0.11 mM (25	HaOa	180 min	7 0	92.0%	1/
	mg L^{-1})	11202	100 1111	7.0	52.070	
Cu-Al ₂ O ₃	0.088 mM (20	HaOa	180 min	7.0	87.0%	15
	mg L^{-1})	11202			07.070	
	0.088 mM (20	HaOa	120 min	6.0	92.1%	16
	mg L^{-1})	11202	120 11111	0.0	52.170	10
Fe ₃ O ₄	0 22 mM (50					
supported on	mg 1 ⁻¹)	persulfate	120 min	5.0	80.2%	17
coal fly ash	111 <u>6</u> - 7					
goothito	0.1 mM (22.8	ЦО	240 min	4.5	75.9%	10
goethite	mg L^{-1})	Π ₂ Ο ₂	240 min			10
Fe ₂ O ₃ -in-CNT	0.04 mM (9.1		190 min	٤ ٩	Q5 70/	2
	mg L^{-1})	11202	100 11111	0.0	03.170	2
	0.022 mM (5	H ₂ O	120 min	6.5	Q3 3%	this study
IVITIO _x -IN-CN I	mg L ⁻¹)	11202	120 (1111)		33.3%	tins study

Table S2 Comparison of the BPA degradation efficiency in the proposed system withreported literature.

Materials	Pollutants	Oxidant	рН	Removal efficiency	References
Mn_3O_4	bisphenol-AF	persulfate	7.0	90.0%	19
Mn@porous	triclocon	ЦО	2.0	83.20/	20
carbon	UTCIOSATI	п ₂ О ₂	5.0	83.37	20
MnO ₂ /CNTs	phenol	H_2O_2	natural	90.0%	21
Cu/MnO	benzotriazo	H_2O_2	7.13	89.0%	22
MnO	ciprofloxacin	persulfate	5.0	84.3%	23
Mn_2O_3	ciprofloxacin	persulfate	5.0	56.2%	23
MnO _x -in-CNT	BPA	H_2O_2	6.5	93.3%	this study

Table S3 Comparison of the performance of the proposed system with reported Mn-based catalysts.

Complex		DO	тос	Conductivity (µs
Samples	рн	(mg L^{-1})	(mg L^{-1})	cm ⁻¹)
Tap water	7.1	9.2	1.6	513.4
Lake water	7.6	8.6	85.3	675.6
Secondary effluent	6.8	8.2	135.7	642.3
Pharmaceutical water	7.4	6.3	261.6	654.1

Table S4 Quality parameters of different water used for BPA removal by MnO_x -in-CNTelectro-Fenton system.

Compounds	Structure	CAS No.	Formula	Industrial use	Health risk
BPA	tit.	80-05-7	$C_{15}H_{16}O_2$	Producing plastics, polymers, and fine chemicals	Endocrine disruption
4-CP	÷	106-48-9	C ₆ H₅ClO	Agricultural chemicals/dyes/drug s manufacturing	Endocrine disruption and reproductive toxicity
2,4,6-TCP	-\$	88-06-2	C ₆ H ₃ Cl ₃ O	Insecticide/fungicide /herbicide	Endocrine disruption and reproductive toxicity
Phenol	*	108-95-2	C ₆ H ₆ O	Resins/fungicides /preservatives/drugs manufacturing	Threats to aquatic ecosystems
SMX	न्तर्भन	723-46-6	$C_{10}H_{11}N_3O_3S$	Antibiotic	Threats to aquatic ecosystems
TC	the second	60-54-8	$C_{22}H_{24}N_2O_8$	Antibiotic	Damage to human health
LFX	A A	100986-85- 4	$C_{18}H_{20}FN_3O_4$	Antibiotic	Threats to aquatic ecosystems
MB	Http:	7220-79-3	C ₁₆ H ₁₈ CIN ₃ S.3 H ₂ O	Dyes	Toxic, carcinogenic, or mutagenic to life forms
RhB	- Artification	547-58-0	$C_{28}H_{31}C_{I}N_{2}O_{3}$	Dyes	Toxic, carcinogenic, or mutagenic to life forms
Aniline	*	62-53-3	C ₆ H ₇ N	Dyes/pesticides/phar maceutical compounds	Carcinogen
ВА	**	65-85-0	$C_7H_6O_2$	Cosmetic/drugs/ food industries	Threats to ecosystem and human health

Table S5 Chemicals used as model organic pollutants.

Note: The compound geometries were drawn using Chem3D software (ChemOffice Professional 19.0). Gray = carbon, red = oxygen, white = hydrogen, blue = nitrogen, and green = chloride.

Fig. S1 Schematic representation of the flow-through electroactive filtration reactor.

Fig. S2 Schematic illustration of the flow-through electro-Fenton system.

Fig. S3 HRTEM image of MnO_x -in-CNT filter.

Fig. S4 (a) TEM image of CNT with closed tip; (b) TEM image of MnO_x -out-CNT filter (Inset) HRTEM image of MnO_x nanoparticles; (c) HAADF-STEM image of MnO_x -out-CNT filter; (d) EDS mapping pattern with C, O, and Mn elements overlapping together; EDS elemental mapping of (d) C, (e) O, and (f) Mn.

The HRTEM image (inset) illustrates two lattice stripe spacings of 0.18 and 0.30 nm, being in good agreement with the $\{222\}$ and $\{044\}$ crystal planes of Mn_2O_3 , respectively.

Fig. S5 (a) XPS wide scan survey spectra and (b) high-resolution Mn 2p spectra of different catalysts.

Fig. S6 XRD patterns of CNT, MnO_x-in-CNT, and MnO_x-out-CNT.

Fig. S7 N₂ adsorption–desorption isotherms of MnO_x -out-CNT and MnO_x -in-CNT.

Fig. S8 CV curves of CNT filter in O_2 - and N_2 -saturated 50 mM Na_2SO_4 solution at pH 6.5 at a scan rate of 10 mV s⁻¹.

Fig. S9 Effect of MnO_x loading on BPA degradation. Experimental conditions: $[BPA]_0 = 0.022 \text{ mM}$, $[pH]_0 = 6.5$, $[DO]_0 = 38.3 \pm 1.6 \text{ mg L}^{-1}$, flow rate = 1.5 mL min⁻¹, and $[Na_2SO_4] = 10 \text{ mM}$.

Fig. S10 Zeta potential of MnO_x versus solution pH.

Fig. S11 Effect of (a) DO and (b) flow rate on BPA degradation. Experimental conditions: $[BPA]_0 = 0.022 \text{ mM}$, $[pH]_0 = 6.5$, and $[Na_2SO_4] = 10 \text{ mM}$.

Fig. S12 Decline of PMSO and production of $PMSO_2$ in the MnOx-in-CNT electro-Fenton system. Experimental conditions: $[PMSO]_0 = 0.5 \text{ mM}$, $[pH]_0 = 6.5$, $[DO]_0 = 38.3 \pm 1.6 \text{ mg L}^{-1}$, flow rate = 1.5 mL min⁻¹, and $[Na_2SO_4] = 10 \text{ mM}$.

Fig. S13 XPS spectrogram and the fitting peak of Mn 2p of after used MnO_x -in-CNT filter.

Fig. S14 Mass spectrum of BPA and intermediates during the BPA removal in MnO_x -in-CNT electro-Fenton system.

Fig. S15 (a) The geometrical structure of BPA, (b) electrostatic potential (ESP) map of BPA, and (c) natural population analysis (NPA) charge distribution and Fukui index of BPA.

Fig. S16 TOC removal in the MnO_x -in-CNT electro-Fenton system. Experimental conditions: $[BPA]_0 = 0.022 \text{ mM}$, $[pH]_0 = 6.5$, voltage = -2.5 V, $[DO]_0 = 38.3 \pm 1.6 \text{ mg L}^{-1}$, $[Na_2SO_4] = 10 \text{ mM}$, and flow rate = 1.5 mL min^{-1} .

Fig. S17 Effect of co-existing substrates on the degradation of BPA by MnO_x -in-CNT electro-Fenton system. Experimental conditions: $[BPA]_0 = 0.022 \text{ mM}$, $[pH]_0 = 6.5$, voltage = -2.5 V, $[CO_3^{2-}, Cl^-, SiO_3^{2-}, NO_3^-] = 10.0 \text{ mM}$, and $[HA] = 5.0 \text{ mg } L^{-1}$, $[DO]_0 = 38.3 \pm 1.6 \text{ mg } L^{-1}$, $[Na_2SO_4] = 10 \text{ mM}$, and flow rate = 1.5 mL min^{-1} .

Fig. S18 Effect of different water matrices on the degradation of BPA by MnO_x -in-CNT electro-Fenton system. Experimental conditions: $[BPA]_0 = 0.022 \text{ mM}$, $[pH]_0 = 6.5$, voltage = -2.5 V, $[DO]_0 = 38.3 \pm 1.6 \text{ mg L}^{-1}$, $[Na_2SO_4] = 10 \text{ mM}$, and flow rate = 1.5 mL min⁻¹.

Fig. S19 The performance of trace BPA degradation in the MnO_x -in-CNT electro-Fenton system. Experimental conditions: $[pH]_0 = 6.5$, voltage = -2.5 V, $[DO]_0 = 38.3 \pm 1.6$ mg L^{-1} , $[Na_2SO_4] = 10$ mM, and flow rate = 1.5 mL min⁻¹.

Fig. S20 Degradation of various organic pollutants in the MnO_x -in-CNT electro-Fenton system. Experimental conditions: $[4-CP]_0 = [2,4,6-TCP]_0 = [phenol]_0 = [SMX]_0 = [LFX]_0 = [TC]_0 = [MB]_0 = [RhB]_0 = [aniline]_0 = [BA]_0 = 0.022 \text{ mM}, [pH]_0 = 6.5, \text{ voltage } = -2.5 \text{ V}, [DO]_0 = 38.3 \pm 1.6 \text{ mg L}^{-1}, [Na_2SO_4] = 10 \text{ mM}, \text{ and flow rate } = 1.5 \text{ mL min}^{-1}.$

Fig. S21 A comparison of BPA degradation stability and leached total Mn concentration of the MnO_x -in-CNT or MnO_x -out-CNT electro-Fenton system. Experimental conditions: $[BPA]_0 = 0.022 \text{ mM}$, $[pH]_0 = 6.5$, voltage = -2.5 V, $[DO]_0 = 38.3 \pm 1.6 \text{ mg L}^{-1}$, $[Na_2SO_4] = 10 \text{ mM}$, and flow rate = 1.5 mL min^{-1} .

Fig. S22 Flow path of the MnO_x-in-CNT electro-Fenton system.

References

- W. Chen, Z. Fan, L. Gu, X. Bao and C. Wang, *Chem. Commun.*, 2010, 46, 3905-3907.
- 2 D. L. Guo, Y. B. Liu, H. D. Ji, C. C. Wang, B. Chen, C. S. Shen, F. Li, Y. X. Wang, P. Lu and W. Liu, *Environ. Sci. Technol.*, 2021, **55**, 4045-4053.
- J. Hutter, M. Iannuzzi, F. Schiffmann and J. VandeVondele, Wires Comput. Mol. Sci., 2014, 4, 15-25.
- 4 M. Ernzerhof and G. E. Scuseria, J Chem. Phys., 1999, **110**, 5029-5036.
- 5 S. E. Boulfelfel, P. I. Ravikovitch, L. Koziol and D. S. Sholl, *J. Phys. Chem. C*, 2016, 120, 14140-14148.
- 6 S. Grimme, J Comput. Chem., 2006, 27, 1787-1799.
- J. P. Perdew, A. Ruzsinszky, J. M. Tao, V. N. Staroverov, G. E. Scuseria and G. I.
 Csonka, J Chem. Phys., 2005, 123, 062201.
- 8 T. Lu and F. W. Chen, *J Comput. Chem.*, 2012, **33**, 580-592.
- 9 C. Flox, P. L. Cabot, F. Centellas, J. A. Garrido, R. M. Rodriguez, C. Arias and E.
 Brillas, *Appl. Catal.*, *B*, 2007, **75**, 17-28.
- 10 Y. Ren, M. Q. Shi, W. M. Zhang, D. D. Dionysiou, J. H. Lu, C. Shan, Y. Y. Zhang, L. Lv and B. C. Pan, *Environ. Sci. Technol.*, 2020, **54**, 5258-5267.
- Q. X. Zhou, A. Xing, J. Li, D. C. Zhao, K. F. Zhao and M. Lei, *Electrochim. Acta*, 2016, 209, 379-388.
- D. D. Bezerra, R. J. Franca and M. R. D. Marques, *Catal. Letters*, 2021, **151**, 1477-1487.
- 13 J. Hu, X. K. Zeng, G. Wang, B. B. Qian, Y. Liu, X. Y. Hu, B. He, L. Zhang and X. W. Zhang, *Chem. Eng. J.*, 2020, **400**, 125869.
- 14 L. L. Zhang, D. A. Xu, C. Hu and Y. L. Shi, *Appl. Catal., B*, 2017, **207**, 9-16.
- 15 Y. Wang, J. Li, J. Y. Sun, Y. B. Wang and X. Zhao, *J. Mater. Chem. A*, 2017, 5, 19151-19158.
- 16 K. L. Pan, C. Z. Yang, J. P. Hu, W. L. Yang, B. C. Liu, J. K. Yang, S. Liang, K. K. Xiao and
 H. J. Hou, *J. Hazard. Mater.*, 2020, **389**, 122072.
- 17 X. M. Xu, S. Y. Zong, W. M. Chen and D. Liu, *Chem. Eng. J.*, 2019, **369**, 470-479.

- 18 J. F. Ding, L. L. Shen, R. P. Yan, S. H. Lu, Y. N. Zhang, X. F. Zhang and H. J. Zhang, *Chemosphere*, 2020, **261**, 127715.
- 19 N. R. Wang, J. Zhang, Y. L. Zhang, P. Zhou, J. Q. Wang and Y. Liu, *Chemosphere*, 2021, **263**, 127950.
- 20 X. L. Zhou, D. Xu, Y. C. Chen and Y. Y. Hu, Chem. Eng. J., 2020, 384, 123324.
- 21 C. Qu, Y. G. Li, S. J. Meng, X. H. Li, S. J. Zhang and D.-W. Liang, *J. Hazard. Mater.*, 2022, **434**, 128923.
- 22 Y. T. Zhang, C. Liu, B. B. Xu, F. Qi and W. Chu, *Appl. Catal., B*, 2016, **199**, 447-457.
- 23 Y. Chi, P. Wang, M. Lin, C. Lin, M. Gao, C. L. Zhao and X. Wu, *Chemosphere*, 2022, 299, 134437.