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S1. Computational details 

Density functional theory (DFT) calculations of NRR pathways based on periodic 

boundary condition (PBC) model were performed by using the DMol3 module1 in the 

Materials Studio software package2. To test the performance of different functionals, 

PBE 3, PW91 4, and BLYP 5-6 were applied for the rate limiting steps and bandgap 

calculations of the Ti-, Co-, and Nb-zeolites. The Grimme method7-8 was applied to 

take the van der Waals interaction into account for metal-zeolites (metal = Sc, Ti, V, 

Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, and Cd). A local basis 

cutoff of 4.0 Å in real space was employed. The energy convergence value between 

two consecutive steps was chosen as 2 × 10-5 hartree. The value of 4.0 × 10-3 hartree 

Å-1 was set for the gradient, and the displacement value was allowed lower than 5 × 

10-3 Å. 

The relative energy (ΔE) of the intermediates in NRR was calculated by 

employing the computational hydrogen electrode (CHE) model, which used one-half 

of the chemical potential of hydrogen as the chemical potential of the proton-electron 

pair. 9 The value of ΔE between two steps involved in the NRR process can be 

expressed as to: 

ΔE = E(N2-mHn@zeolite) + m E(NH3) – E(N2) – n/2 E(H2) – E(zeolite)      (S1), 

where E(N2-mHn@zeolite) was the energy of intermediates in the zeolites. E(NH3), 

E(N2), E(H2), and E(zeolite) were the energy of ammonia, dinitrogen, hydrogen, and 

substrate, respectively. The value, n is the number of H+/e- pairs transferred, and m 
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(m=0, 1) is the number of ammonia molecules released.  
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S2. Construction of the ZA dataset 

Table S1. ZA dataset for experimental data 

Zeolite Ammonia production (mg/g)a 

Ti-3A 0.4 

Ti-4A 0.22 

Ti-5A 0.55 

a taken from ref 10-11 
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Table S2. ZA dataset for theoretical data 

Metal system NHB χ  EA IE N_d Z  R  M  NN  NH  Pathway (Si/Al)-1 PLD RDLS Q  Q_r ΔQCT LA dN dO1 dO2 dO3 dO4 dSi 
ΔE 

(eV) 

Sc 
Al-3-MFI-Sc-N2 

0 1.36  0.1880  6.5616  1  21 162.00  44.96  2  0  1  0.03  5.277  0.1276  1.717  1.739  0.022  0.365  2.062  2.095  2.183  2.238  2.297  2.372  -0.97  

 Al-3-MFI-Sc-NNH 
1 1.36  0.1880  6.5616  1  21 162.00  44.96  2  1  1  0.03  5.277  0.1276  1.717  1.555  -0.162  0.365  2.103  2.114  2.171  2.181  2.238  2.831  -0.78  

 Al-3-MFI-Sc-NNH2 
2 1.36  0.1880  6.5616  1  21 162.00  44.96  

2  2  
1  0.03  5.277  0.1276  1.717  1.688  -0.029  0.365  2.069  2.135  2.145  2.192  2.234  2.828  -1.40  

 Al-3-MFI-Sc-NNH3 
3 1.36  0.1880  6.5616  1  21 162.00  44.96  

2  3  
1  0.03  5.277  0.1276  1.717  1.585  -0.132  0.365  1.924  2.119  2.191  2.224  2.274  2.851  -1.19  

 Al-3-MFI-Sc-N 
0 1.36  0.1880  6.5616  1  21 162.00  44.96  

1  0  
1  0.03  5.277  0.1276  1.717  1.588  -0.129  0.365  2.074  2.112  2.205  2.205  2.267  2.609  3.49  

 Al-3-MFI-Sc-NH 
0 1.36  0.1880  6.5616  1  21 162.00  44.96  

1  1  
1  0.03  5.277  0.1276  1.717  1.619  -0.098  0.365  1.941  2.099  2.215  2.222  2.279  2.859  0.60  

 Al-3-MFI-Sc-NH2 
1 1.36  0.1880  6.5616  1  21 162.00  44.96  

1  2  
1  0.03  5.277  0.1276  1.717  1.681  -0.036  0.365  1.995  2.088  2.197  2.203  2.265  2.704  -2.56  

 Al-3-MFI-Sc-NH3 
1 1.36  0.1880  6.5616  1  21 162.00  44.96  

1  3  
1  0.03  5.277  0.1276  1.717  1.772  0.055  0.365  2.058  2.129  2.188  2.203  2.219  2.683  -5.00  

 Al-3-MFI-Sc-NHNH 
1 1.36  0.1880  6.5616  1  21 162.00  44.96  2  2  2  0.03  5.277  0.1276  1.717  1.721  0.004  0.365  2.105  2.140  2.240  2.241  2.259  2.266  -1.23  

 Al-3-MFI-Sc-NHNH2 
1 1.36  0.1880  6.5616  1  21 162.00  44.96  

2  3  
2  0.03  5.277  0.1276  1.717  1.717  0.000  0.365  2.085  2.139  2.160  2.224  2.259  2.706  -2.47  

 Al-3-MFI-Sc-NH2NH2 
2 1.36  0.1880  6.5616  1  21 162.00  44.96  2  4  2  0.03  5.277  0.1276  1.717  1.806  0.089  0.365  2.096  2.166  2.208  2.234  2.256  2.263  -4.01  

  
Al-3-MFI-Sc-NH2NH3 

2 1.36  0.1880  6.5616  1  21 162.00  44.96  2  5  2  0.03  5.277  0.1276  1.717  1.289  -0.428  0.365  2.152  2.219  2.257  2.367  2.408  2.847  -2.87  

 

Note: To save the space, we only list DFT data for several metal-zeolites. If one needs the complete set of data, please write to 

majing@nju.edu.cn.  
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Fig. S1 (a) Energy diagrams for NRR in Sc-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  

 

Each structure can be divided into three moieties: zeolite (moiety 1, substrate), metal 

(moiety 2, metal center), and the adsorbed N2-mHn species (moiety 3, intermediates), 

respectively. 
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Fig. S2 (a) Energy diagrams for NRR in Ti-zeolite (Si/Al = 31) via distal and 

alternating pathways with free energy changes in parenthesis; charge variation of 

three moieties along the (b) distal and (c) alternating pathways of NRR.  
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Fig. S3 (a) Energy diagrams for NRR in V-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S4 (a) Energy diagrams for NRR in Cr-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S5 (a) Energy diagrams for NRR in Mn-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  

 



S11 

 

 

Fig. S6 (a) Energy diagrams for NRR in Fe-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S7 (a) Energy diagrams for NRR in Co-zeolite (Si/Al = 31) via distal and 

alternating pathways with free energy changes in parenthesis; charge variation of 

three moieties along the (b) distal and (c) alternating pathways of NRR.  
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Fig. S8 (a) Energy diagrams for NRR in Ni-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S9 (a) Energy diagrams for NRR in Cu-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S10 (a) Energy diagrams for NRR in Zn-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S11 (a) Energy diagrams for NRR in Y-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S12 (a) Energy diagrams for NRR in Zr-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S13 (a) Energy diagrams for NRR in Nb-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S14 (a) Energy diagrams for NRR in Mo-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S15 (a) Energy diagrams for NRR in Ru-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S16 (a) Energy diagrams for NRR in Rh-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S17 (a) Energy diagrams for NRR in Pd-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S18 (a) Energy diagrams for NRR in Ag-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S19 (a) Energy diagrams for NRR in Cd-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S20 (a) Energy diagrams for NRR in Ta-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S21 (a) Energy diagrams for NRR in W-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  

 



S27 

 

 
Fig. S22 (a) Energy diagrams for NRR in Re-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S23 (a) Energy diagrams for NRR in Os-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S24 (a) Energy diagrams for NRR in Ir-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S25 (a) Energy diagrams for NRR in Pt-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S26 (a) Energy diagrams for NRR in Pb-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S27 (a) Energy diagrams for NRR in Bi-zeolite (Si/Al = 31) via distal and 

alternating pathways; charge variation of three moieties along the (b) distal and (c) 

alternating pathways of NRR.  
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Fig. S28 (a) The calculated energy changes of rate limiting steps and (b) bandgap of 

metal-zeolites by using different DFT functionals. 

 

 

 

Table S3. The calculated energy changes of rate limiting steps and bandgap of metal-

zeolites by using different DFT functionals. 

metal-zeolites 
ΔEmax (eV)   Eg (eV) 

PBE BLYP PW91   PBE BLYP PW91 

Ti-zeolite 0.13 0.22 0.12 
 

0.63 0.76 0.67 

Co-zeollite 0.04 0.07 0.03 
 

1.13 1.57 1.37 

Nb-zeolite 0.54 0.79 0.40   0.94 0.91 0.95 
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S3. Multilevel attention graph convolutional neural network 

DeepMoleNet based on atom and atom pair as node and edge inputs could 

describe the molecular information to give the prediction of the catalytic systems 

automatically. These inputs are composed of real number vectors, one hot encoding 

related to atom and atom pair information. The atom nodes inputs are atomic type, 

atomic number, van der Waals radius, and atom node degree. The bond type, Gaussian 

expanded distance are for the description of the edge features. The hyper-parameters 

of DeepMoleNet are listed in Table S4, and ACSFs are calculated by Dscribe package. 

12  

 The intermediate structures including 492 cluster models were employed in the 

graph convolution neural network, where 393 data were chosen as the training set, 49 

for validation set, and the rest for the test set. Large-sized systems would be difficult 

to predict due to the large computation complexity, which may limitted its 

applications. The local environment around active sites would make more 

contributions to the NRR than the long-ranged frameworks according to the chemical 

intuition.  
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Table S4. Hyper-parameters of DeepMoleNet 

Category Hyper-parameter Value 

Message Passing Function Message passing steps T 6 

 
Edge network layers 3 

 
Edge network hidden dim 256 

Update Function Node hidden units dim 256 

 
Attention layer 2 

Readout Function Atom-wise NN 2 

 
Output NN hidden layer 3 

 
Output NN hidden units 256 

Auxiliary Target/ACSFs Radial functions [1, 1], [1, 2], [1, 3] 

 
Angular functions [1, 1, 1], [1, 2, 1], [1, 1, -1], [1, 2, -1] 

Training Initial learning rate 2×10-4 

 
Scheduler Cosine Annealing LR 

 
Optimizer Adam 

 
Batch size 64 

  Training epochs 5000 

 

 

 

 

Table S5. R2 of GCNN models on training, validation, and test sets. 

Models Training set Validation set Test set 

Model A 0.91  0.90  0.88  

Model B 0.86  0.87  0.87  

Model C 0.90  0.92  0.90  
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Fig. S29 (a) The structure of model A, including intermediate, metal and framework 

moieties; the prediction performance of (b) ΔE and (c) ΔΔE; (d) illustration of the 

attention in message passing of model A. The color indicates the relative weight, in 

which red and blue colors mean the weight of 1 and 0, respectively.  
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Fig. S30 (a) The structure of model B, including intermediate, metal and framework 

moieties; the prediction performance of (b) ΔE and (c) ΔΔE; (d) illustration of the 

attention in message passing of model B. The color indicates the relative weight, in 

which red and blue colors mean the weight of 1 and 0, respectively.  
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Fig. S31 (a) The structure of model C, including intermediate, metal and framework 

moieties; the prediction performance of (b) ΔE and (c) ΔΔE; (d) illustration of the 

attention in message passing of model C. The color indicates the relative weight, in 

which red and blue colors mean the weight of 1 and 0, respectively.  
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Fig. S32 (a) The values of ΔΔEmax of metal-zeolites (Ti, Co, and Nb) along distal 

pathway with different Si/Al ratios (Si/Al = 31, 23, 18.2); (b) correlation between the 

ΔΔEmax and LA descriptor. 
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S4. Feature selection 

 

Fig. S33 The relationship between LA and binding energy of NH3 in metal-zeolites.  

 

 

Fig. S34 RDLS and pore largest diameter (PLD) of different metal-zeolites; for 

comparison, the RDLS of siliceous zeolite is shown as a horizontal dashed line. 
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Fig. S35 Comparison of the performance of different algorithms of the explainable 

machine learning according to the root-mean-squared error (RMSE), mean absolute 

error (MAE), and coefficient of determination (R2) without PLD descriptors. 

 

 

Fig. S36 The electrostatic potential of the siliceous zeolite.  
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Table S6. The electrostatic potential of metal-zeolites (metal = Sc, Ti, V, Cr, Mn, Fe, 

Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Ta, W, Re, Os, Ir, Pt, Pb, and Bi).  

Sc-zeolite Ti-zeolite V-zeolite 

   
Cr-zeolite Mn-zeolite Fe-zeolite 

   
Co-zeolite Ni-zeolite Cu-zeolite 

   
Zn-zeolite Y-zeolite Zr-zeolite 



S43 

 

   
Nb-zeolite Mo-zeolite Ru-zeolite 

   
Rh-zeolite Pd-zeolite Ag-zeolite 

   
Cd-zeolite Ta-zeolite W-zeolite 
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Re-zeolite Os-zeolite Ir-zeolite 

   
Pt-zeolite Pb-zeolite Bi-zeolite 

   

 

 



S45 

 

 

Fig. S37 Volcano-shaped relationship between the ΔΔEmax and adsorption energy of 

(a-b) N2 molecule, (c-d) NNH*, and (e-f) NH2* intermediates along the distal and 

alternating pathways, respectively. 
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Fig. S38 (a) Side-on and lying-on adsorption modes of N2 molecule in metal-zeolites; 

(b) the relationship between the N2 binding energies and bond lengths of N2 molecules; 

(c) the relationship between charges and bond lengths of N2 molecules.  
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Fig. S39 (a) The index of local acidity from metal and framework; (b) the relationship 

between the local acidity and the binding strength of N2.  
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Table S7. Charge density differences and PDOS of N2 adsorbed in metal-zeolites 

(metal = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Ta, 

W, Re, Os, Ir, Pt, Pb, and Bi).  

Metal-

zeolites 
Charge density difference PDOS 

Sc-zeolite 

 
 

Ti-zeolite 

  

V-zeolite 

  

Cr-zeolite 

  

Mn-zeolite 
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Fe-zeolite 

  

Co-zeolite 

  

Ni-zeolite 

  

Cu-zeolite 

  

Zn-zeolite 

 
 

Y-zeolite 
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Zr-zeolite 

  

Nb-zeolite 

 
 

Mo-zeolite 

  

Ru-zeolite 

  

Rh-zeolite 

  

Pd-zeolite 
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Ag-zeolite 

  

Cd-zeolite 

 
 

Ta-zeolite 

  

W-zeolite 

  

Re-zeolite 

 
 

Os-zeolite 
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Ir-zeolite 

  

Pt-zeolite 

  

Pb-zeolite 

  

Bi-zeolite 

  

The charge depletion and accumulation were colored by blue and yellow with 

isosurface of 0.003 e/Å3, respectively. Projected density of states (PDOS) of N2 

molecule in corresponding metal-zeolites, where the orbitals of metal center and N2 

molecule are depicted by green and blue colors, respectively. 

 

For further insight on the effect of metal sites on NRR process, the plots of 

differential charge density of N2 molecule adsorption and projected density of states 

(PDOS) in different metal-zeolites were shown in Table S7. The charge transfer could 

occur between N2 and metal-zeolites to strengthen the adsorption ability. With the 
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adsorption of the N2 molecule on the metal center, the orbitals of nitrogen shift 

significantly. The unoccupied orbitals of metal centers could accept electrons from the 

2π and 3σ molecular orbitals of nitrogen molecules, which promoted the N2 

adsorption ability. Moreover, the occupied orbitals of metal sites back-donate 

electrons to the 2π* orbital of nitrogen molecules, resulting in the elongation of N≡N 

bond length. The 2π* orbital shifted to the Fermi level to activate N2 for 

hydrogenation in the following NRR steps.  

 

 

 

Fig. S40 Pearson correlation coefficient matrix of 7 features. 
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S5. Explainable machine learning models 

S5.1 7-feature explainable machine learning models 

Table S8. Parameters of the explainable machine learning models for predicting the 

pathway probability and relative energy 

Parameter Pathway probability 

prediction 

Relative energy 

prediction 

0.115 

13 

480 

8 

0.84 

0.98 

0.9 

0.3 

learning_rate 0.25 0.115 

 

 

max_depth 6 13 

n_estimators 

 

40 480 

min_child_weight 1 8 

subsamlpe 0.8 0.84 

colsample_bytree 1 0.98 

reg_alpha 0.35 0.9 

reg_lambda 0.15 0.3 

 

 

Table S9. The terms and units in SISSO features 

  terms unit 

SISSO1 

 

 

 

 

Å·e 

SISSO2 

 

Å2 

 

 

e 

 

 

 

SISSO3 

 

 

 
PLD Å 

  LA 
 

 

𝑃𝐿𝐷 ∗ ∆𝑄𝐶𝑇 

𝑑𝑀𝑁
2  

∆𝑄𝐶𝑇 

𝑒𝑁𝑁 + 𝑒𝑁𝐻 

𝑙𝑔𝑁𝑁

𝑁𝑁
𝑁𝐻𝐵 

𝑁𝐻

𝑁𝑁
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S5.2 A multiparameter explainable machine learning model 

We choose 21 initial features to predict the relative energy (ΔE) during overall 

NRR in metal-zeolites, which can be classified into four groups, including metal site, 

coordination, framework, and pathway features, respectively. Pearson correlation 

coefficient matrix of initial features was shown in Figure S41.  

Metal site features. The introduced metal atoms could be active sites for nitrogen 

reduction reaction because N2 molecules would be activated by the “push-pull” 

hypothesis upon the adsorption in metal-zeolites. It is significant to select the 

descriptors of active sites, including electro-negativity of metal atoms (χ), electron 

affinity of metal atoms (EA), first ionization energy of metal atoms (IE), the number 

of d electrons of metal atoms (Nd), atomic number of metal atoms (Z), the molar mass 

of the metal atoms (M), atomic radius of metal atoms (R), and the Mulliken charge of 

the metal atoms before (Q) and during (Qr) the NRR process, respectively.  

 Three features, including χ, EA, and IE, can describe the ability of acceptance and 

donation of electrons. For example, the more electronegative an element is, the more 

capable the atoms are of attracting electrons in the compound. Electron affinity (EA) 

is the energy released by a gaseous atom in its ground state to gain an electron to 

become a gaseous anion. And the first ionization energy (IE) of metal atom is the 

energy required for a gaseous atom in its ground state to lose an electron in its 

outermost shell. The lower the first ionization energy, the easier it is for an atom to 
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lose an electron and vice versa. To reveal the importance of the interaction between 

metal centers and the intermediates during the NRR process, Nd is selected as the 

descriptor to stand the number of valence electrons of metal atoms in the d orbitals. 

Three features (Z, M, and R) could describe the size of the metal center. Z is equal to 

the number of protons in nucleus, indicating the position of the element in the periodic 

table of the elements. M is the molar mass of the corresponding metal atoms in the 

zeolites and R is the atomic radius of metal atoms. To avoid the redundancy of the 

features, R is retained according to the Pearson correlation analysis (Fig. S41) in the 

14-feature scheme. The charge transfer between the metal centers and intermediates 

plays an important role in the NRR process, so we take the Mulliken charge of metal 

(Q and Qr standing for the charge before and during the NRR process, respectively) 

into account for the prediction.  

Coordination features. The variation of coordination environment could adjust 

the chemical reactivity in reaction, which can be the local descriptors for the reaction 

prediction. 13 The geometric distances between metal active sites and the nearest 

atoms were selected as the coordination environment descriptors. We found that the 

distance between metal atom and N atom of intermediates (dMN) was shortest among 

the coordination descriptors, indicating the strongest coordination ability. The metal 

atom could be anchored in the framework by coordination with four O atoms in the 6-

MR around the channel, which were denoted as dO1, dO2, dO3, and dO4 with the 

increase of the length in turn. The dSi was the nearest distance between the Si and the 

metal atom.  
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Framework features. The confinement of the metal atoms could be realized by the 

framework of zeolite, which can be immobilized by the small rings in the zeolites. 

Refinement distance least squares, RDLS, is a local descriptor to describe the distortion 

of the framework in our previous work. 14 It displayed the qualitative relationship 

between the local geometry distortion which has an influence of the adsorption of 

nitrogen molecules by changing the electrostatic environment. The larger distortion 

may give rise to a larger electrostatic interaction between the intermediates and the 

zeolites. Furthermore, the local electrostatic environment can also be tuned by the 

Si/Al ratio. To avoid the redundancy of the descriptors in the feature learning, we 

retain the RDLS to give a description of the zeolite framework distortion.  

Compared with the local descriptors focused on the specific catalytic sites, the 

global descriptors lay the emphasis on the whole channel structures and reaction 

pathways. The channel architecture of zeolites is important for the adsorption and 

diffusion properties in general. Here, the largest included sphere (PLD) was applied to 

describe the porosity of zeolites.  

Pathway features. The formation of intermediates is complex during the NRR 

pathways. Different pathways of nitrogen reduction reaction have been studied over 

time, such as the Chatt type, including the distal and alternating reaction pathways. 15-

19 Two possible associative NRR pathways, namely, distal and alternating are 

calculated to explore the performance of metal-zeolites as catalysts for the conversion 

of N2 to NH3. In the distal pathway, hydrogen atoms will add to the nitrogen molecule 
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distal from the zeolite internal surface, firstly. After the distal NH3 molecule has been 

released, the nitrogen atom close to the zeolite internal surface is reduced by hydrogen 

atoms attacking and desorbed as the second NH3 molecule to finish the catalytic 

process. When following the alternating pathway, hydrogen atoms are added to the 

distal nitrogen atom firstly, and then to the proximal nitrogen atom alternately until 

the intermediate NH2NH2* is formed. The first NH3 molecule is released until the 

NH2NH2* was hydrogenated. When the second NH3 molecule is formed and desorbed, 

the alternating catalytic pathway is completed. We chose the pathway features to 

describe the distal pathway (pathway = 1) and alternating pathway (path = 2), total 

number of nitrogen atoms in intermediates (NN), and number of hydrogen atoms in 

intermediates (NH). 

Although 21 initial features could give good prediction performance of the NRR 

process in metal-zeolites (MAE = 0.38 eV and R2 = 0.92), as shown in Fig. S42, the 

number of the initial features seems to be redundant for the prediction for the NRR 

process as the optimal model. Can we reduce the number of the features to enhance 

the generalization ability of the prediction model? SISSO method can extract effective 

material descriptors from possibly correlated feature spaces in many applications, 

such as new tolerance factor of perovskite oxides and halides, and the activity and 

selectivity of the single atom catalysts in NRR. 20-23 Here, the value of ΔE was 

selected as the target results to describe the activity of NRR in metal-zeolites. The 

SISSO approach could select 2.04×1011 candidate three-dimensional (3D) descriptors, 

where the dimensionality is defined as the number of iterations of complexity in the 
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descriptor space. The SISSO features are obtained as follows.  

𝑆𝐼𝑆𝑆𝑂1 =
𝑑𝑂1

𝑑𝑀𝑁
+

𝑁𝐻

𝑁𝑁
− (𝑒𝑄 − 𝑒𝑄𝑟)    (𝑆2) 

𝑆𝐼𝑆𝑆𝑂2 =
|2𝜒 − 𝑁𝑑|

𝐼𝐸 × 𝑁𝑁 × (𝑁𝐻 + 𝑁𝑁)
    (𝑆3) 

𝑆𝐼𝑆𝑆𝑂3 =
|

𝑁𝑁

𝑑𝑀𝑁
−

𝑁𝐻

𝑑𝑂4
|

√𝑁𝑁 × 𝑅 𝑑𝑂3⁄
    (𝑆4) 

Three 3D SISSO features constructed by a combination of functional operations 

of 12 initial features and two framework features were then selected to give the 

prediction of NRR process by nine algorithms of feature learning in Figs. S43 and 

S44. With the number of the features reduced, the GBR algorithm could still exhibit a 

good fitting ability (MAE = 0.39 eV, RMSE = 0.56 eV, and R2 = 0.91) with the 

parameters in Table S10, indicating the feasibility of such a model for predicting the 

nitrogen fixation process in metal-zeolite systems. The importance of three SISSO 

features and two framework features are 0.29, 0.25, 0.21, 0.13, and 0.12, respectively, 

as shown in Fig. S43d. The prediction performance of other algorithms, such as ANN, 

linear ridge, MLR, SVR, kNN, and Decisiontree, could get improved with the 

introduction of the SISSO features obviously, indicating the importance of the feature 

establishment (Fig. S45).  
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Fig. S41 Pearson correlation coefficient matrix of 21 features in multiparameter 

model, which were classified in framework (in orange color), reaction pathway (in 

blue), coordination (in red), and active site (in green) descriptors. 
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Fig. S42 Performance of different feature learning algorithms, including (a) Extratrees, 

(b) XGBoost, (c) GBR, (d) Decisiontree, (e) ANN, (f) Kneighbor, (g) SVR, (h) 

Linear_ridge, and (i) MLR with 21 initial features. 
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Fig. S43 (a) The selection process of three SISSO descriptors and two framework 

descriptors; (b) comparison of the performance of different algorithms of the FL 

according to the root-mean-squared error (RMSE), mean absolute error (MAE), and 

coefficient of determination (R2); (c) prediction of ΔE of NRR process by GBR 

algorithm via three SISSO 3D descriptors and two framework descriptors; (d) the 

feature importance of GBR models for predicted ΔE.  
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Fig. S44 Performance of different feature learning algorithms, including (a) GBR, (b) 

XGBoost, (c) Extratrees, (d) ANN, (e) Linear_ridge, (f) MLR (g) SVR, (h) Kneighbor, 

and (i) Decisiontree with 3 SISSO features and 2 zeolite framework features. 
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Fig. S45 Performance of different feature learning algorithms, including (a) Extratrees, 

(b) GBR, (c) XGBoost, (d) Decisiontree, (e) Kneighbor, (f) ANN, (g) Linear_ridge, (h) 

SVR,and (i) MLR with 14 initial features. 
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Table S10. Parameters of the multiparameter feature learning model 

Parameter value 

learning_rate 0.115 

max_depth 12 

n_estimators 

 

120 

Subsample 0.78 

alpha 0.9 

min_samples_leaf 8 

min_sample_split 5 
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Table S11. The bond length of N-N following the enzymatic pathway 

Systems Substrate 
Active 

site 

dNN 

(Å) 

Ead 

(eV) 

RLS 

(eV) 
Ref. 

W-zeolite MFI W 1.27  −1.40  0.47  this work 

Mo-embedded BN 

monolayer 
BN monolayer MoN3 1.20  −0.87  0.35  

J. Am. Chem. Soc. 2017, 139, 

12480−12487 

V@BN 
BN monolayer 

VN3 1.18  −0.73  0.41  Nanoscale, 2020, 12, 1541–1550 

Tc@BN TcN3 1.21  −1.15  0.59    

V/β12-BM β12-Boron 

monolayer 

V 1.16  −0.63  0.28  J. Phys. Chem. C 2019, 123, 4274−4281 

Mn/β12-BM Mn 1.15  −0.52  0.83  
 

TiB2 monolayer TiB2 Ti3 1.34  −2.54  0.58  J. Mater. Chem. A, 2019, 7, 25887–25893 

NbB2 monolayer NbB2 Nb3 1.34  −3.13  0.64    

meta-doped BP phosphorene meta-B2 1.22  −1.20  0.58  J. Mater. Chem. A, 2019, 7, 4865–4871 

B2@MoS2 MoS2 B2 1.24  −2.11  0.19  Nanoscale, 2019, 11, 18769–18778 

Ru2@GY graphyne Ru2 1.18  −0.35  0.43  
J. Phys. Chem. C 2020, 124, 

15295−15301 

Mn2@GDY 

graphdiyne 

Mn2 1.17  −0.55  0.52  
J. Phys. Chem. C 2019, 123, 

19066−19076 

Fe2@GDY Fe2 1.19  −0.83  0.56    

Co2@GDY Co2 1.17  −0.75  0.54    

B@g-CN g-CN B 1.21  −0.86  0.31  Nano Lett. 2019, 19, 6391−6399 

B/C2N C2N B 1.21  −0.58  0.18  
 Phys. Chem. Chem. Phys., 2019, 21, 

12346-12352 

Bint-doped C2N layer C2N B 1.18  −0.77  0.15   J. Mater. Chem. A, 2019, 7, 2392–2399 

B@C2N 
C2N 

B 1.21  −0.98  0.45  Nanotechnology, 2019, 30, 335403 

B2@C2N B2 1.21  −2.11  0.35    

Mn2@C2N C2N Mn2 1.21  −0.65  0.23  Small Methods 2019, 3, 1800291 

Fe2-N6@G 

graphene 

Fe2N6 1.20  −0.51  0.46  J. Phys. Chem. Lett. 2020, 11, 6320−6329 

Ru2-N6@G Ru2N6 1.21  −1.56  0.36    

Ir2-N6@G Ir2N6 1.20  −0.46  0.53    

Mo1-N1C2 graphene MoN1C2 1.18  −1.19  0.40  
J. Phys. Chem. C 2018, 122, 

16842−16847 

Mo/SeG graphene Mo/Se 1.18  −1.13  0.41  
Phys. Chem. Chem. Phys., 2019, 21, 

14583-14588  

Mo@BCN-5 BN/graphene Mo 1.19  −0.97  0.58  J. Mater. Chem. A, 2019, 7, 15173–15180 

MoN3@555-777 

graphene 
graphene MoN3 1.22  −1.14  0.65  

Phys. Chem. Chem. Phys., 2020, 22, 9322-

9329 

GDY-2B(S2S2') 
graphdiyne 

B2 1.28  −0.85  0.28  
Phys. Chem. Chem. Phys., 2021, 23, 

17683–17692 

GDY-2B(S4A1) B2 1.21  −0.32  0.78    
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Table S12. NH3 desorption free energies and yields in experiment 

Systems 

NH3 

desorption free 

energies (eV) 

Yield (μg h-1 mgcat
-1) FE Ref. 

boron carbide 

nanosheet 
1.73 26.57 15.95% (-0.75 V) Nat. Commun., 2018, 9, 3485. 

boron phosphide 

nanoparticles 
1.23 26.42 12.7% (-0.60 V) 

J. Mater. Chem. A, 2019, 7, 

16117. 

iron phthalocyanine 0.94 137.95 10.5% (-0.30 V) ACS Catal., 2019, 9, 7311−7317. 

NiPS3 nanosheets 1.32 118 >17% (-0.40 V) 
Chem. Eng. J., 2022, 430, 

132649. 

Fe-SnO2 1.16 82.7 20.4 % (-0.30 V) 
Angew. Chem. Int. Ed., 2020, 59, 

10888–10893. 
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Fig. S46 Summary of ΔΔERLS values obtained by DFT and feature learning and 

Mulliken charges on 27 metal-zeolite catalysts along (a) distal and (b) alternating 

pathways. Color codes represent the product at the RLS of each catalyst; the 

structures of key intermediates in Cu-, Nb-, Rh-, Ti-, and Co-zeolites.  
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S6. Non-metal zeolites 

In silicalite MFI zeolites, the distal pathway with the hydrogen bonding 

interaction was calculated for the reduction of N2 to NH3, as shown in Fig. S47a. The 

adsorption of nitrogen can be reach −0.30 eV, indicating that the first step of nitrogen 

fixation can be realized. However, the first hydrogenation occurs by a proton coupled 

with an electron attacking the nitrogen in framework to form the N2H* intermediates, 

in which the energy is uphill by 2.18 eV. In the following step, the H atom 

consecutively attacks the same N atom to form the NNH2* and NNH3* species, with 

the 0.04 eV downhill and 1.68 eV uphill in energy, respectively. The first NH3 

molecule is released with the energy uphill of 0.13 eV. The other hydrogenation steps, 

including reducing species N* to NH*, NH* to NH2* and NH2* to NH3* are downhill 

by −1.24, −1.71, and −3.09 eV, respectively. However, the too much energy input 

from N2* to N2H* indicates the difficulty of the nitrogen reduction in silicate zeolites. 

In Fig. S47b, the distance between the nitrogen atoms elongated from 1.11 Å to 1.43 

Å with the H atom attacking the distal nitrogen atom until the first NH3 molecule 

desorption, indicating that the reduction could take place in the zeolite under the 

optimized conditions. In Fig. S47c, the extent of charge variation along the NRR 

pathway is tiny, indicating that the charge transfer between intermediates and the 

zeolite framework is small. Hence, a more efficient zeolitic catalyst should be 

designed rationally to realize the nitrogen reduction reaction.  
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Fig. S47 (a) Schematic illustration of the distal reaction pathway during the N2 

reduction; (b) energy diagrams for NRR in silicalite MFI zeolite via distal pathway, 

the N1−N2 bond distance variation during N2 fixation process also presented in inset; 

(c) charge variation of intermediates along the distal pathway of NRR.  
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S7. Bandgap of metal-zeolites 

 

Fig. S48 (a) The bandgap of different metal-zeolites; for comparison, the Al-

containing zeolite (Si/Al = 31) shown as a horizontal dashed line; (b) the PDOS of Ti-, 

Co-, Nb-zeolite, respectively. 
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S8. Solvation effects 

 
Fig. S49 The energy profiles for Ti-zeolite during alternating pathway by applying 

water, n-hexane solvents, and without solvation effects. 
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