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Finite Element Method Modeling

In the phase field model for dielectric breakdown of ceramics, a scalar phase
field s(r, 7) is taken as the order parameter to describe the state of damage.S! The
value of s varies from 0 to 1, with s = 1 indicating the un-breakdown state and s = 0
the fully breakdown state. Similar to that of brittle fracture,5> the temporal
propagation of spatially breakdown path can be obtained from the following time-

dependent Ginzburg Landau (TDGL) equation:

8s(r,t)=_m OoH a1
ot os(r,t) (ST)

where H is the total free energy of the ceramic system, which can be expressed by the

integration of the electrical enthalpy % over the whole system volume V, ¢ represents



time, m is the kinetic coefficient relating to the dielectric breakdown propagation,
0H/os(r, t) denotes the thermodynamic driving force, r is the spatial vector, and r =
(x1, x;) for the two-dimensional simulation considered in this work. Generally
speaking, the electrostatic energy is stored by the outer electrical loading and when
exceeds the criterion for propagation, it will be released to provide the energy
dissipation for creation of the damaged phase, i.e. conductive breakdown channel.
The total free-energy density /4 of the material can be expressed as a function of order
parameter s, its gradient Vs, and electric field E;:
B =Rgeo (S, ED) + Ry (8) + By (V) (S2)

The electrostatic energy density Age(s, E;) can be described through the Legendre
transform as:

Moo (S, E;) = —%gEl.El_ (S3)
where ¢ is the permittivity of material and the electric field components can be
calculated by the negative gradient of electric potential E; = - ®,. Note that, the fully
damaged channel after dielectric breakdown will lose its insulating capability and
become conductive. To describe the conductive behavior of the fully damaged phase,

it is considered as a dielectric phase with very large permittivity for simplicity.S' The

permittivity of the system is written as a function of order parameter s,

_ & (S4)
2= n

where £ is the permittivity of the intact material, f{s) = 4s3-3s* is the interpolation
function selected to satisfy a smooth transition between the permittivity of damaged

phase &(0) and undamaged phase &(1), # is a small enough number to realize the large



permittivity of damaged phase in the numerical calculation and 7 is selected to be 10-
in this work. To evaluate the energy consumption for the creation of damaged phase,
the breakdown energy density is then introduced,

Do (8) =W [1= f ()] (S5)
with W, indicating the critical electrostatic energy density for the formation of
damaged phase. More detailed, W, = I'/?, I is approximately the breakdown energy,
and / is an intrinsic length scale of the breakdown channel. To include the
contribution of interface between the damaged phase and undamaged phase, the
gradient energy density is then introduced as

D) =%|VS|2 (S6)
besides the TDGL equation, the Maxwell’s equation of 6(-0h/OE;)/(0Ox;) = 0 must be
satisfied for the charge free material. The detailed expansions of the governing
equations can be found in previous work.5* For convenience, the following set of the

dimensionless variables are employed.
¢*: ¢ 7t*: tz ,l"*=l"/l (S7)
r /
& ml’

To solve above governing equations in the real space, a non-linear multi-field

coupling finite element method is adopted by using COMSOL software. The
simulation model of ceramics are considered as composites of grain cores and grain
boundaries, with detailed distribution extracted from real SEM images. Generally, the
breakdown energy of the grain boundary is considered to be higher than that of the

grain, while the permittivity of the grain boundary is degenerative. Subscript ‘g’



represents grain cores and ‘gb’ is corresponding to grain boundaries. In this work, the
breakdown energy is set as [ ,/I,, = 1/10, and the permittivity is taken as g,/gq, = 10/1.
The average size of the meshing block grids is approximately 34x34 nm? in the real
space. Each node of meshes has 2 degrees of freedom, including 1 electrical potential
and 1 breakdown order parameter. Periodic boundary condition was applied along the
x; direction to describe the infinite size of the samples in plane. The distribution of
initial state of breakdown order parameter is uniformly set as 1 for the intact phase. In
order to concentrate the electric field and initiate breakdown in a controllable way, a
thin stripe with initial s value set to be 0, is placed at the middle of the sample and
connected to the top electrode. The loading of external electric filed was applied along
the x, direction by giving specific electric potential on the top surface with the bottom
surface grounded. The electric field is uniformly raised to £* = 5 until £ = 0.1, then

kept constant.
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Fig. S1. Schematic diagram of P-E hysteresis loops, and some characteristic
parameters for energy storage of (a) linear dielectrics, (b) ferroelectrics, (c) relaxor

ferroelectrics, and (d) antiferroelectrics.
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Fig. S2. XRD patterns of AgNbO; powders prepared by the hydrothermal method

with different synthesis time.



Fig. S3. FE-SEM images and the grain size distribution of AgNbO;3 powders prepared
by the hydrothermal method with different synthesis time: (a) 14 h, (b) 20 h, (c) 24 h,

and (d) 36 h.

Fig. S4. EDS spectrum and quantitative atomic percent of various elements in
hydrothermally prepared AgNbO; ceramics with different powder synthesis time: (a)

14 h, (b) 20 h, (c) 24 h, (d) 36 h.
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Fig. S5. (a) XRD patterns of AgNbOj; ceramics prepared by the hydrothermal method
with different powder synthesis time. (b) Fine scanning XRD patterns of the ceramics

in the 26 range of 31.5-33°. (¢) The d-spacing for (020) and (114) planes.
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Fig. S6. Rietveld refinement on XRD patterns of AgNbO; ceramics prepared by the
hydrothermal method with different powder synthesis time: (a) 14 h, (b) 20 h, (c) 24 h,

and (d) 36 h based on Pbcm space group.
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Fig. S7. Apparent and relative densities of AgNbO; ceramics prepared by the

hydrothermal method with different powder synthesis time.
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Fig. S8. The SEM image and grain size distribution of the AgNbO; ceramic prepared

by the solid-state reaction method.

Fig. S9. FE-SEM-EDS mapping images of AgNbO; ceramics prepared by the

hydrothermal method with different powder synthesis time: (a) 14 h, (b) 20 h, (c) 24 h,

and (d) 36 h.
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Fig. S10. Dielectric constant and loss of AgNbO; ceramics prepared by the
hydrothermal method with different powder synthesis time: (a) 14 h, (b) 20 h, (c) 24 h,

and (d) 36 h.
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Fig. S11. (a) Dielectric constant and loss of the AgNbO; ceramic prepared by the
solid-state reaction method. (b) Phase transition temperature and (c) unipolar /-E
loops of AgNbOj; ceramics prepared by the solid-state reaction way and hydrothermal

way with powder synthesis time of 20 h.
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Fig. S12. (a) [Nb-O| bond and (b) |O-O| bond lengths of AgNbO; ceramics prepared
by the solid-state reaction way and hydrothermal way with powder synthesis time of

20 h.
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Fig. S13. (a) Weibull distribution plots, (b) unipolar P-E loops under different electric
fields and (¢) W, and 7 of the AgNbO; ceramic prepared by the solid-state reaction

method.
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Fig. S14. Complex impedance plots of AgNbO; ceramics prepared by the (a)
hydrothermal way with powder synthesis time of 20 h and (b) solid-state reaction

method.
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Fig. S15. (a) Leakage current densities of AgNbO; ceramics prepared by the solid-
state reaction way and hydrothermal way with powder synthesis time of 20 h. (b)
Unipolar P-E loops, and (c) W and 5 of the AgNbO; ceramic prepared the solid-

state reaction method at 160 °C.
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Fig. S16. (a) XRD patterns of AgNbO; powders prepared by the microwave-assisted
hydrothermal method with different powder synthesis time, and (b) FE-SEM images
and grain size distribution (the inset) of the powders with the synthesis time of 6 h. (c)
XRD patterns of the microwave-assisted hydrothermally prepared AgNbO; ceramics

with powder synthesis time of 6 h and (d) SEM images and grain size distribution (the



inset) of the ceramic.
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Fig. S17. EDS spectrum and quantitative atomic percent of various elements in

AgNbO; ceramics prepared by the microwave-assisted hydrothermal method with

powder synthesis time of 6 h.

Fig. S18. FE-SEM-EDS mapping images of the AgNbO; ceramic prepared by the

microwave-assisted hydrothermal method with powder synthesis time of 6 h.
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Fig. S19. (a) Unipolar P-E loops, (b) Pmax, Pr and Pp-P;, and (c) W, and 7 of
AgNbO; ceramics prepared by the microwave-assisted hydrothermal method with
powder synthesis time of 6 h during 10-350 Hz. (d) Unipolar P-E loops, (€) Pmax, Pr

Prox-Py, and (f) Wy, and 7 of the ceramic under different cycle numbers and 100 Hz.
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Fig. S20. (a) Bipolar P-E and /I-E (the inset) loops, (b) Raman spectra, (c) Weibull
distribution plots, (d) unipolar P-E loops at different electric fields, and (e) W, and 5
of the AgNbOj; ceramic prepared by the microwave-assisted hydrothermal method
with powder synthesis time of 6 h. (f) Comprehensive capacitive performance
parameters of AgNbO; ceramics prepared by microwave-assisted hydrothermal and

hydrothermal methods.
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