Supporting Information

Electron redistributed Ni-Co oxide nanoarray as an ORR/OER bifunctional catalyst for low overpotential and long lifespan Li-O₂ batteries

Weiwei Wang,[‡]^a Jinyan Cai,[‡]^a Hao Wan,^a Wenlong Cai,^b Zixuan Zhu,^a Chengming

Wang,^c Tiansheng Zhou,^a Zhiguo Hou,^{*a} Yongchun Zhu,^{*a} and Yitai Qian^{*a}

^aDepartment of Applied Chemistry
University of Science and Technology of China
Hefei 230026, P. R. China
E-mail: zghou@ustc.edu.cn; ychzhu@ustc.edu.cn; ytqian@ustc.edu.cn
^bCollege of Material Science and Engineering
Sichuan University
Chengdu 610000, P. R. China
^cInstruments Center for Physical Science
University of Science and Technology of China
Hefei 230026, P. R. China
[‡] These authors contributed equally to this work.

*Corresponding authors:

E-mail: zghou@ustc.edu.cn; ychzhu@ustc.edu.cn; ytqian@ustc.edu.cn

Fig. S1 SEM images of a-b) Carbon Cloth (CC) and c-d) Ni-Co precursor after hydrothermal reaction at 120 °C on carbon cloth.

Fig. S2 SEM and TEM images of NCO/CC.

Fig. S3 SEM and Element mappings of NNCO/CC.

Fig. S4 a) High-resolution XPS spectra of NNCO/CC and NCO/CC; b-d) High-resolution XPS spectra of Ni 2p, Co 2p, and O 1s of NCO/CC.

Fig. S5 Electron paramagnetic resonance (EPR) spectra of NNCO and NCO.

Fig. S6 Pore size distribution curve of NNCO and NCO.

Fig. S7 The rate capability of NCO/CC and KB electrodes with different current densities.

Fig. S8 a-b) Cycling performance of NCO/CC electrode with a capacity restriction (0.1 or 0.2 mAh cm⁻²) and c-d) Cycling performance of KB electrode with a capacity restriction (0.1 or 0.2 mAh cm⁻²). The specific capacities are calculated with the areal capacity.

Fig. S9 Cyclic performance of the NNCO/CC, NCO/CC, and KB cathode at a current of 0.05 mA cm⁻² with a specific capacity limit of 0.5 mAh cm⁻².

Fig. S10 TEM images of initial discharged containing NNCO/CC electrode.

Fig. S11 XRD patterns of NNCO/CC electrode after initial discharging and recharging processes.

Fig. S12 Ex-situ SEM images of NCO/CC at 0.05 mA cm⁻² with fully discharged.

Fig. S13 FTIR spectra for the NNCO/CC at pristine, discharged (0.05 mA cm⁻², 0.8 mAh cm⁻²), and recharged states. Reference materials are also displayed.

Fig. S14 EIS taken on the NCO/CC cathode at different charging states.

Fig. S15 The top view of CoO, N-CoO, NiCoO₂, N-NiCoO₂ model.

Fig. S16 Optimized structures of different intermediate adsorbed on (100) plane for CoO and NiCoO₂.

Fig. S17 Calculated free energy diagrams for the discharge-charge reactions on the active surface of CoO, N-CoO, NiCoO₂, and N-NiCoO₂.

Fig. S18 The initial discharge-charge curves of N-NiCoO₂/CC and N-CoO/CC within a current density of 0.05 mA cm⁻² at a capacity limitation of 0.1 and 0.5 mAh cm⁻².

Table S1. ICP of NNCO and NCO.

	Ni	Со	Nico
	(µg/ml)	(µg/ml)	MI:CO
NNCO	5.653	11.027	0.513
NCO	5.604	11.341	0.494

Catalysts	Crystal	a råi	a (Å)		AF LaVI	
Catalysis	faces	u _{Li-O} [A]	u ₀₋₀ [A]	∠0-Li-0 [°]	ΔL _{ads} [ev]	
CoO	(100)	1.833/1.915	1.442	45.182	-1.356	
N-CoO	(100)	1.861/1.871	1.45	45.732	-1.313	
NiCoO ₂	(100)	2.103/1.810	1.358	39.739	-0.080	
N-NiCoO ₂	(100)	1.854/1.859	1.39	43.964	-2.605	

Table S2. The adsorption energies (ΔE_{ads} [eV]) of LiO₂ and the related factors on the CoO, N-CoO, NiCoO₂, and N-NiCoO₂.

Catalysts	Morphology		Cycle number	Reference
		Overpotential	[cycles/current density	
			(mA·cm ⁻²)/cutoff	
		(V)	capacity (mAh cm ⁻² or	
			mAh g ⁻¹)]	
Co ₃ O ₄ -		0.8	87/0.05/0.15	1
CNF@CC	nanoarrays			1
NiCo ₂ O ₄ /CC	nanowires	0.94	200/0.2/0.3	2
CoNiO ₂ /SCC-N	nanoneedle	~0.5	147/0.05/0.25	3
Mn _{0.8} Co _{0.2} O	nanorod	0.48	30/0.05/0.5	4
Fe ₂ O ₃ /CNT	nanoparticle	1.3	50/0.1/1.0	5
MoNO	nanosheets	~0.5	50/0.1/1000	6
NNCO/CC	nanoarrays	0.35		This
			550/0.05/0.1	work

Table S3. Comparison of electrochemical performance between this work and some reported oxide-based cathodes for LOBs.

Reference

- 1. L. Xiao, D. Wang, M. Li, B. Deng and J. Liu, J. Energy Chem., 2020, 46, 248-255.
- K. Song, B. Yang, Z. Li, Y. Lv, Y. Yu, L. Yuan, X. Shen and X. Hu, *Appl. Surface.* Sci., 2020, 529, 147064.
- 3. H. Liang, F. Chen, M. Zhang, S. Jing, B. Shen, S. Yin and P. Tsiakaras, *Appl. Catal. A: General*, 2019, **574**, 114-121.
- D. Cao, L. Zheng, Q. Li, J. Zhang, Y. Dong, J. Yue, X. Wang, Y. Bai, G. Tan and C. Wu, *Nano Lett.*, 2021, 21, 5225-5232.
- 5. Z. Li, S. Ganapathy, Y. Xu, Q. Zhu, W. Chen, I. Kochetkov, C. George, L. F. Nazar and M. Wagemaker, *Adv. Energy Mater.*, 2018, **8**, 1703513.
- S. Zhang, G. Wang, J. Jin, L. Zhang and Z. Wen, *Energy Storage Mater.*, 2020, 28, 342-349.