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Descriptors 

Descriptors in the ‘elemental’ category include the ionic radius,1 atomic mass,2 Pauling electronegativity,3,4 polarizability, Bader charge, and 
Born effective charge. The polarizability, 𝛼, of alkali metal ions was estimated by averaging reported values in solid-state chalcogenides and 
halides (e.g., 𝛼K in K3OCl was determined by averaging 𝛼K in K2O and in KCl). Similarly, the polarizabilities of the anions were adopted from 
chalcogenides and halides (e.g., 𝛼O and 𝛼Cl in K3OCl were adopted from their values in K2O and KCl, respectively).5,6 Bader charges and Born 
effective charges were predicted using the authors’ prior DFT calculations on the anti-perovskites.7–13 Since two cation sites are involved in a 
migration path as the end points of that path, the Bader charge and the Born effective charge corresponding to each path were estimated by 
averaging the values of the cations at each end point. The Bader and Born effective charges for a given anion species were taken as the average 
over all instances of that species within the unit cell. 

Descriptors in the ‘lattice’ category include those related to volume, atomic packing, coordination, phonon frequencies, and atomic distances. 
The packing fraction of the anions (PFA) is defined as the ratio of the unit cell volume occupied by the anions to the total cell volume. This 
fraction was obtained by overlaying the cell volume onto a grid, and defining the packing fraction as the ratio of grid points that overlap with 
atomic spheres to the total number of grid points. This procedure is iterated using increasingly finer grids until the packing fraction converges.14 
The tolerance factor, t, measures the degree of lattice distortion in the (anti)perovskite structure,15 and is calculated by 𝑡 =
(𝑅X + 𝑅B)/)√2(𝑅X + 𝑅A),, where RX, RB, and RA are the atomic radii of the cation (X site), the anion at the octahedron center (A site), and 
the anion on cubic framework sites (B site). The lattice tends to be cubic for compositions with t ~ 1, and becomes orthorhombic for smaller t 
(usually when t <~ 0.8). The channel size is defined as the largest diameter of a sphere that can pass through the anion sublattice; it was calcu-
lated using the Zeo++ code.16 The channel size was reported as an important factor for ion mobility within a series of LGPS-related electrolytes.17 
The coordination number of a cation was determined by evaluating the number of neighboring ions within a distance of 1.2 times of the sum 
of the cation’s and anion’s ionic radii. The coordination numbers of two cations at the ends of path were averaged (as was done for the Bader 
charge). 

Atomic distances used as features include: the distance between neighboring cations, CCD, equivalent to the length of an octahedron edge); 
the distance between cation and octahedral/framework anions, COD and CFD, respectively; and the between anions, AAD.14 COD and CFD 
were evaluated as the distance from a cation to the closest octahedral/framework anion. COD/CFD of cations at the ends of a migration path 
were averaged (as done for the Bader charge). AAD was obtained by identifying the closest neighboring anion to each anion, and averaging 
these distances over all anions in the cell.  

The path width was evaluated by identifying ions near to the migration path, and calculating the perpendicular distance from the path to the 
nearest ion(s)  (see Ref.14 for a detailed explanation). Three categories of path width are considered: a width determined by the distance to 
closest ion (PWc), a width determined by the distance to the second-closest ion (PW2c), and the total path width (PW), which is the sum of 
PWc and PW2c.  

Lattice dynamics (i.e., phonon frequencies) have been reported to be import for ion mobility.18–20 We employed the frequency of lowest-
energy optical phonon (𝜔LEO) to account for the effect of lattice dynamics.13,19 Bulk modulus was included as a descriptor in the ‘mechanical’ 
category. This modulus was calculated in the authors’ prior study.11,12 

Descriptors in the ‘electronic’ category include the band gap, dielectric constant, and polarizability. The total dielectric constant (𝜀) was 
obtained by the sum of electronic (𝜀$) and ionic (𝜀%) contributions. 𝜀$  and 𝜀%  were calculated in the authors’ prior DFT calculations.13 High 
polarizability has been linked to high ion mobility through a ‘lattice softening’ effect.21 The polarizability of compound was calculated using the 
Clausius-Mossotti relation:22  
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where 𝑣atom is the lattice volume per atom.  
Finally, descriptors in the ‘Chemical’ category include bond ionicity and thermodynamic stabilities. The bond ionicity between a cation and 

chalcogen anion (IC-Ch), between cation and halogen anion (IC-H), and between chalcogen and halogen anions (ICh-H) were calculated as the 
difference in electronegativities between the respective species.14 The energy above the convex hull (i.e., decomposition energy) was included 
as a measure of stability of the anti-perovskite.11,12,23 The formation energies of a neutral vacancy and of an interstitial dumbbell were calculated 
as:24 

𝐸f = 𝐸AP_defect − 4𝐸AP_pristine +∑ 𝑛%𝜇%% 8, 

where 𝐸AP_defect and 𝐸AP_pristine are the total energies of the anti-perovskite supercell with and without a cation defect, i is the defect species (Li, 
Na, or K), and 𝑛%  and 𝜇%  are, respectively, the number of cations removed or added to the cell (n = -1 for a vacancy and +1 for an interstitial 
dumbbell) and the chemical potential of the cation. The defect formation energy corresponding to a given elementary path is assigned by aver-
aging the formation energies of the two defects at the end points of that path. 
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Feature filtering 

In a few cases correlated descriptors did not undergo filtering. This occurred in cases where the descriptors appeared to be unrelated (based 
on the authors’ chemical intuition) or they conveyed information needed to differentiate between migration pathways. As an example of the 
former scenario, the feature pair ‘Bader charge of cation (BCC)’ and ‘Cation – octahedral anion distance (COD)’ were not filtered despite 
having a correlation 𝜌 = -0.81. For the latter scenario, ‘Path distance (CCD)’ and ‘Volume per atom (Va)’ have 𝜌 = +0.89, reflecting that a 
compound comprised of larger atoms will have greater distances between cations. Nevertheless, both descriptors were retained because CCD 
is needed to differentiate distinct cation migration paths in different compounds and within a compound. Also, for simplicity, secondary corre-
lates were eliminated as redundant descriptors; e.g., Eg and 𝜔LEO were removed since they both correlate with B, yet B also correlates strongly with 
Va. Hence, through the transitive property, all of Eg, 𝜔LEO, and B were dropped as redundant descriptors in favor of retaining Va.  

 

 

 

Machine-learning algorithms 

Ridge25 and LASSO26 linear regression regularize the error function by adding a penalty (L2 or L1 norm), so as to reduce the absolute value 
of the regression coefficients and prevent overfitting. The elastic net uses both L1 and L2 norms with an additional hyperparameter that controls 
the ratio between contributions of two penalties.27 This algorithm performs better than LASSO when some features are correlated.27 Bayesian 
ridge regression is a iterative learning process performed by updating coefficients; similar to Ridge regression, it includes a regularization term 
(L2 norm).28 Bayesian automatic relevance determination (ARD) regression is a modified version of the Bayesian ridge regression that uses sepa-
rated regularization hyperparameters to model coefficients; this is particularly effective when that data contains irrelevant features.29 The regu-
larization hyperparameter(s) in the Bayesian models are optimized automatically during fitting. Huber regression is similar to ridge regression, 
but uses an absolute error for outliers so that the model is less sensitive to them (an additional hyperparameter controls the threshold to identify 
outliers).30 Passive-aggressive regression (PAR) is a margin-based regression algorithm using the hinge loss (allowing errors when they are within 
a margin, otherwise the linear L1 error is used), which is suitable for large-scale data.31 Random sample consensus (RANSAC) is an iterative 
algorithm to find inlier samples that will be used to train the final model (a hyperparameter controls the ratio of random subsamples to total 
samples). RANSAC was implemented with the ridge and LASSO regressors (namely RANSAC + Ridge and RANSAC + LASSO, respectively). 

Support vector regressor (SVR) is a regression version of the support vector machine (SVM) classifier that uses a separating hyperplane with a 
soft margin that allows some degree of misclassification.28 Epsilon-SVR determines support vectors (i.e., misclassified samples) using the margin 
area and minimizes the regularized hinge loss with the support vectors.28,32,33 Linear-SVR is similar to epsilon-SVR but uses a different solver 
suitable for large-scale data.34 Rather than using margin area, Nu-SVR controls the number of support vectors (ratio of data outside the margin 
to entire data).28,33,35 

Decision tree regression (DTR) constructs decision criteria (e.g., 𝑥+ ≥ 𝜃+, 𝑥- < 𝜃-, 𝑥- ≥ 𝜃&, etc., where 𝑥 are features and 𝜃 are feature values 
for thresholds) so that samples in a node are divided into leaves of a tree-like structure.28,36 A fully-grown decision tree is likely to suffer from 
overfitting, so adjusting a decision tree (i.e., ‘pruning’) can improve the predictive accuracy.37 Adjustable hyperparameters are (1) the minimum 
number of samples to split, (2) the minimum number of samples at a leaf, (3) the maximum depth of the tree, and (4) the maximum number 
of features considered at each split. Random forest regression (RFR) averages tree models trained with random samples, a technique called ‘boot-
strap aggregating (bagging)’ that improves the prediction (a hyperparameter controls the number of tree models).38–40 Extremely randomized 
tree regression (ERTR) is similar to RFR, but further randomizes each tree model by arbitrarily selecting cut-point choices.41 Boosting is a tech-
nique that trains multiple weak learners (models slightly better than random) during iterative learning. The learners are used as an ensemble 
classifier (or regressor); this approach can perform better than any single model.28 The ‘adaptive boosting (adaboost)’ algorithm gives greater 
weights to training samples with higher errors shown in a previous weak model.42,43 We implemented the adaboost algorithm with RFR and 
ERTR as weak models (namely adaboost + RFR and adaboost + ERTR, respectively). The gradient boosting regression tree (GBRT) successively 
fits a new model to residual errors shown in a previous step, and adds the predicted residuals to the previous prediction.44 
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Figure S1. Pearson correlation analysis of descriptors and interstitial dumbbell migration barriers. 
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Table S1. Optimal feature combinations for a given number features for ML models for vacancy migration barriers. Values in paren-
thesis indicate feature importance. 

No. of features 
in model 

Features – vacancy migration 
1st  2nd 3rd 4th 5th 6th 7th 8th 

Single feature  Va (100%)        

Two features  CCD (69%) Va (31%)       

Three features CCD (46%) PW (32%) 𝛼> (22%)      

Four features CCD (45%) PW (30%) IC-Ch (14%) IC-H (10%)     

Five features CCD (42%) PW (28%) 𝛼> (11%) 𝛼? (10%) BCO (9%)    

Six features CCD (44%) PW (28%) IC-Ch (11%) 𝛼> (7%) Va (6%) BECO (4%)   

Seven features CCD (42%) PW (29%) IC-Ch (10%) 𝛼> (6%) IC-H (5%) Ed (5%) 𝜌m (4%)  

Eight features CCD (42%) PW (28%) IC-Ch (8%) 𝛼> (6%) BCO (5%) IC-H (5%) Va (4%) BCF (4%) 

 

 

Table S2. Optimal feature combination for a given number features for ML models of interstitial migration barriers. Values in paren-
thesis indicate feature importance. 

No. of features 
in model 

Features – interstitial migration  
1st  2nd 3rd 4th 5th 

Single feature  Ef (100%)     

Two features  PW (53%) BECC (47%)    

Three features PW (49%) Ef (35%) IC-Ch (16%)   

Four features PW (43%) Ef (29%) 𝛼? (15%) Ed (13%)  

Five features PW (40%) Ef (28%) 𝛼? (13%) 𝜌m (10%) Ed (9%) 
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Figure S2. Test error (i.e., RMSE for the migration energy as evaluated within the test dataset) of ‘adaboost + ERTR’ models constructed using differ-
ent single features as input for the (a) vacancy and (b) interstitial dumbbell migration mechanisms. The features are sorted by increasing RMSE from 
left to right. 
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Figure S3. Individual conditional expectation (ICE) plots for features relevant for interstitial dumbbell migration: (a) total path width (PW), (b) 
defect formation energy (Ef), and (c) bond ionicity between cation and chalcogen anion (IC-Ch). The bold line depicts the average of the migration 
barrier over all curves. 𝜎 denotes the standard deviation of a given feature within the training data. Blue lines represent the change in migration barrier 
for each migration path in the training dataset as the target feature (PW, Ef, IC-Ch) is varied from its minimum to its maximum value.  
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