SUPPORTING INFORMATION

Surface stability of ionic-liquid-passivated mixed-cation perovskite probed with in-situ photoelectron spectroscopy

Suresh Maniyarasu^a, Ben F. Spencer^{bc}, Hongbo Mo^b, Alex S. Walton^d, Andrew G. Thomas^{*bc} and Wendy R. Flavell^{*ac}

^aPhoton Science Institute, Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, M13 9PL, U.K.

^bPhoton Science Institute, Department of Materials, School of Natural Sciences, The University of Manchester, M13 9PL, U.K.

^cHenry Royce Institute, The University of Manchester, M13 9PL, U.K.

^dPhoton Science Institute, Department of Chemistry, School of Natural Sciences, The University of Manchester, M13 9PL, U.K.

*E-mail: wendy.flavell@manchester.ac.uk and andrew.g.thomas@manchester.ac.uk

Figure. S1 (a, b) Reverse scan (black) and forward scan (red) *J-V* curves of devices fabricated with FACs and IL-FACs films, respectively.

Figure S2. The overview spectra of FACs (black) and IL-FACs (red) measured using XPS at room temperature under UHV conditions.

Figure S3. High-resolution C 1s spectra of FACs and IL-FACs measured under UHV conditions during thermal annealing. Spectra labelled as (i), (ii), and (iii) correspond to room temperature, 100 °C and 150 °C, respectively. Spectra have been normalised to the intensity of the Pb $4f_{7/2}$ signal from Pb²⁺ for each condition.

Figure S4. High-resolution O 1s spectra of IL-FACs measured at UHV conditions, during exposure and after exposure to 9 mbar water vapour at room temperature. Spectra labelled (i), (ii), and (iii) correspond to the sample measured before, during, and after exposure, respectively. Spectra are normalized to the intensity of Pb $4f_{7/2}$ core level from Pb²⁺ for each condition.

Figure S5. High-resolution core level NAPXPS spectra of (a,b) Cs 3d, (c,d) C 1s obtained from FACs (a,c) and IL-FACs (b,d) measured at different conditions as noted. Spectra labelled (i), (ii), (iii) and (iv) correspond to the sample measured under UHV conditions, at 100 °C in 9 mbar water vapour, 150 °C in 9 mbar water vapour and at room temperature in UHV conditions (after exposure), respectively. For each condition, all spectra are normalized to the intensity of the Pb $4f_{7/2}$ core level from Pb²⁺.

Figure S6. High-resolution O 1s spectra of IL-FACs measured at different conditions as noted. Spectra labelled (i), (ii), (iii) and (iv) correspond to the sample measured under UHV conditions, at 100 °C in 9 mbar water vapour, 150 °C in 9 mbar water vapour and at room temperature in UHV conditions (after exposure), respectively. Spectra are normalized to the intensity of Pb $4f_{7/2}$ core level from Pb²⁺ for each condition.

Sample	Pb^{2+}	I	N (FA)	N (IIL)	C-N(FA)	C-N (IL)	С-Н	Cs	Metallic Pb ⁰
Nominal	1.0	3.0	1.8		0.9			0.1	0
FACs pristine	1.0 ± 0.1	2.7 ± 0.2	1.2 ± 0.2	I	0.7 ± 0.2	I	1.9 ± 0.2	0.07 ± 0.02	0.07 ± 0.02
FACs 100 °C	1.0 ± 0.1	2.6 ± 0.2	1.0 ± 0.2	ı	0.6 ± 0.2	ı	1.3 ± 0.2	0.05 ± 0.02	0.11 ± 0.02
FACs 150 °C	1.0 ± 0.1	2.1 ± 0.2	0.4 ± 0.2	I	0.2 ± 0.2	ı	0.7 ± 0.2	0.04 ± 0.02	0.17 ± 0.02
L-FACs pristine	1.0 ± 0.1	3.2 ± 0.2	1.4 ± 0.2	0.5 ± 0.1	0.8 ± 0.2	1.6 ± 0.2	3.2 ± 0.2	0.12 ± 0.02	ı
L-FACs 100 °C	1.0 ± 0.1	3.5 ± 0.2	1.6 ± 0.2	0.5 ± 0.1	0.9 ± 0.2	1.4 ± 0.2	3.9 ± 0.2	0.08 ± 0.02	ı
L-FACs 100 °C	1.0 ± 0.1	3.5 ± 0.2	1.6 ± 0.2	0.5 ± 0.1	0.9 ± 0.2	1.4 ± 0.2	3.8 ± 0.2	0.05 ± 0.02	0.02

Pb ²⁺ , and	
o ²⁺ , Cs/l	
²⁺ , C/Pł	
²⁺ , N/Pb	
i.e. I/Pb	
$b^{2+}]=1.0,$	
to [Pb	
normalised	perature.
(and	of tem
n XPS	nction e
d fron	s a fur
calculate	sample a
ometry	J-FACs
stoichi	s ¹ and II
emental	he FACs
1. EI) of ti
le S	Pb^{2+}
Tabl	Pb ⁰ /l

Sample	${ m Pb}^{2+}$	I	0 1s	N (FA)	N (IL)	C-N(FA)	C-N (IL)	C-H	Cs	Metallic Pb ⁽
onditions										
Vominal	1.0	3.0		1.8		0.9			0.1	0
Cs before	1 0 + 0 1	c U + 9 c	0.6 ± 0.1	10+01		C U + 8 U		C U + C C	0.04 ± 0.03	0.06 ± 0.02
xposure	1.0 - 0.1	7.0 - 0.7	1.0 - 0.0	7.0 - 7.1	I	7.0 - 0.0	I	7.0 - 0.7		70.0 - 00.0
ACs after	10-01									
xposure	1.U ± U.1	2.4 ± 0.2	0.0 ± 0.1	1.U ± U.L	ı	U .1 ± U .2	ı	J. 0 ± 0.2	CU.U ± 1U.U	0.00 ± 0.02
L-FACs										
before	1.0 ± 0.1	2.7 ± 0.2	1.5 ± 0.1	1.5 ± 0.2	0.5 ± 0.1	0.9 ± 0.2	1.0 ± 0.2	5.9 ± 0.2	0.1 ± 0.02	0.02 ± 0.02
xposure										
L-FACs										
after	1.0 ± 0.1	2.6 ± 0.2	2.1 ± 0.1	1.5 ± 0.2	0.4 ± 0.1	0.9 ± 0.2	1.0 ± 0.2	5.8 ± 0.2	0.03 ± 0.02	0.02 ± 0.02
xposure										

MAAAIIEA DEO	ζ		r water vapour.	ure to 9 mba	after expos	PS before and	lated from X	umples calcu	IL-FACs sa DL2+	ACs ¹ and
Pb^0/Pb^{2+}) of the	, Cs/Pb ²⁺ , and	V/Pb ²⁺ , C/Pb ²⁺	l.0, <i>i.e.</i> I/Pb ²⁺ , N	d to [Pb ²⁺]=1	d normalised	rom XPS (an	calculated f	toichiometry	Elemental st	Fable S2.

vapour.							200		
Sample	Pb^{2+}	Г	N (FA)	N (IL)	C-N(FA)	C-N (IL)	C-H	Cs	Metallic Pb ⁰
Nominal	1.0	3.0	1.8		0.9			0.1	0
FACs before exposure	1.0 ± 0.1	2.8 ± 0.2	1.8 ± 0.2	 1	0.9 ± 0.2		1.7 ± 0.2	0.08 ± 0.02	0.1 ± 0.02
FACs after exposure and	1.0 + 0.1	1.7 + 0.2	0.1 + 0.2	ı	0+0	I	3.2 + 0.2	0.03 ± 0.02	0.1 + 0.02
annealing									
before	1.0 ± 0.1	2.7 ± 0.2	1.4 ± 0.2	0.4 ± 0.1	0.9 ± 0.2	1.1 ± 0.2	7.0 ± 0.2	0.09 ± 0.02	0.1 ± 0.02
exposure IL-FACs									
after	10+01	2.0 + 0.2	20 + 00	0.2 ± 0.1	0.0 + 0.2	0.8 ± 0.2	4.2 + 0.2	0 12 + 0 02	0.2 ± 0.02
exposure and		101	10-10	1.0 - 2.0				10.0 - 11.0	

annealing

Table S3	. Elemental	antal stoichiometry calculated from XPS (and normalised to [Pb ²⁺]=1.0, <i>i.e. IP</i> b ²⁺ , N/P	$^{2+}$, C/Pb ²⁺ , Cs/Pb ²⁺ , and
Pb^0/Pb^{2+})	of the FACs	ACs and IL-FACs samples calculated from NAPXPS before and after annealing to 100 an	1 150 °C in 9 mbar water
vapour.			

Table S4. Stoichiometry ratio of O 1s calculated from XPS (and normalised to $[Pb^{2+}]=1.0$, *i.e.* O/Pb²⁺) of the FACs and IL-FACs samples calculated from XPS before and after annealing to 100 and 150 °C in 9 mbar water

Sample Conditions	Oads	Olattice
FACs before exposure	0.4 ± 0.1	
FACs after exposure and annealing	0.4 ± 0.1	0.2 ± 0.1
IL-FACs before exposure	1.8 ± 0.1	
IL-FACs after exposure and annealing	1.4 ± 0.1	0.5 ± 0.1

Reference

1 S. Maniyarasu, J. C. R. Ke, B. F. Spencer, A. S. Walton, A. G. Thomas and W. R. Flavell, *ACS Appl. Mater. Interfaces*, 2021, **13**(**36**), 43573-43586.