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ABSTRACT: Metal oxides has emerged promising potential in catalytic oxidation of H2S at 

room temperature, but is currently challenged by a low catalytic performance and tendency to 

be corroded in acid reaction surroundings. Herein, we report a facile strategy to prepare a 

series of ultrafine metal oxide nanoparticles loaded on reduced graphene oxide (rGO) for 

efficient H2S catalytic oxidation at room temperature. The hyper-dispersed nanoparticles 

solve the stacking of rGO to maintain the two-dimensional sheet structure, breaking through 

the limits of traditional porous carbons with easy blockage of nanopores and low porosity, 

thereby offering large sulfur storage depot. Meanwhile, higher density of alkaline sites is 

provided for catalytic reaction and synergistically enhances the desulfurization performance. 

Further, Density functional theory (DFT) calculation is employed for interpreting involved 

mechanism and find that MgO crystal, with larger band gap and poorer degree of its bands 

mixing with H2S orbitals, possesses lower reactivity towards H2S corresponding to the strong 

corrosion resistance. Hence, MgO/rGO composite exhibits an excellent catalytic activity with 

breakthrough capacity of 3110 mg/g, higher than the other counterparts. The current work 

could contribute new insights into synergistic catalytic oxidation mechanism of H2S by metal 

oxides and carbon-based composites, which provides theoretical basis for the design and 

development of efficient room-temperature desulfurizers.

Keywords:  Metal oxides, Ultrafine nanoparticles, Graphene oxide, Room-temperature H2S 

oxidation, Catalytic mechanism
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1. Supplementary Figures
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Figure S1. Raman spectra of the GO and rGO.
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Figure S2. High-resolution C 1s spectra of the GO.
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Figure S3. High-resolution C 1s spectra of the rGO.
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Figure S4. EDX spectra and of the metal oxide/rGO.

It can be found from the EDX spectrum that the metal oxide/rGO composite is mainly 

composed of C, O and corresponding metal elements, and there are no other impurity 

elements.
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Figure S5.  High-resolution Zn 2p spectrum of MgO/rGO.
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Figure S6.  High-resolution Zn 2p spectrum of ZnO/rGO.

For the high-resolution Zn 2p spectrum of Zn /rGO, it can be divided into two peaks at 

1022.4 eV and 1045.4 eV, corresponding to 2p3/2 and 2p1/2 splitting peaks in ZnO[1].
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Figure S7. High-resolution Fe 2p spectrum of Fe2O3/rGO.

The high-resolution Fe 2p spectrum of Fe2O3/rGO can be divided into eight peaks, of 

which the sub peaks at 711.4 eV and 725.0 eV belong to 2p3/2 and 2p1/2 splitting peaks in 

Fe2O3, and the sub peaks at 718.6 eV and 732.2 eV belong to Fe3+ satellite peaks[2], and  the 

sub peaks at 710.3 eV and 723.9 eV belong to 2p3/2 and 2p1/2 splitting peaks in FeO, and the 

sub peaks at 715.7 eV and 729.3 eV belong to Fe2+ satellite peaks.
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Figure S8. High-resolution Al 2p spectrum of Al2O3/rGO

The high-resolution Al 2p spectrum of Al2O3/rGO shows that there is only a single peak 

at 74.7 eV, corresponding to the bonding of Al2O3
[3].
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Figure S9. N2 adsorption-desorption isotherms of rGO and MgO/rGO.
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Figure S10. TG curves of the MgO/rGO catalyst before and after desulfurization.
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Figure S11. DTG curves of the MgO/rGO catalyst before and after desulfurization.
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Figure S12. XRD patterns of the MgO/rGO catalyst before and after desulfurization.
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Figure S13. XPS spectra of the metal oxide/rGO-S.
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Figure S14. The reaction energy and path for  H2O → H + OH on the surface of ZnO crystal 

(100).
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Figure S15. The reaction energy and path for  H2O → H + OH on the surface of Fe2O3 crystal 

(311).
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Figure S16. Partial density of states (PDOS) of H2S in gas phase.
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2. Supplementary Tables

Table S1. Functional group contents of GO and rGO resulted from C 1s spectra

samples C=C/C-C C-O C=O O-C=O

GO 49.6% 25.5% 13.1% 11.8 %

rGO 71.2% 15.7% 7.5% 5.6%
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Table S2. Elemental analysis of GO and rGO

samples C (wt.%) H(wt.%) O (wt.%)

GO 51.94 3.1 45.05

rGO 77.74 1.57 20.69
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Table S3. The deconvolutionized peak positions and the corresponding ferrum species from 

Fe 2p analysis.

composition of Fe speciesm

samples
Fe2O3 (Fe3+):

711.4 eV (Fe 2p3/2),

725.0 eV (Fe 2p1/2)

FeO (Fe2+):

710.3 eV (Fe 2p3/2),

723.9 eV (Fe 2p1/2)

Fe2O3/rGO 91.6% 8.4%
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Table S4. The acid-basic property of the composites, including rGO, MgO/ rGO and 

Fe2O3/rGO.

samples rGO MgO/ rGO Fe2O3/rGO

PH 5.8 11.1 7.1
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Table S5. The deconvolutionized peak positions and the corresponding sulfur species from S 

2p analysis.

composition of S speciesm

samples
sulfide (S-2):

161.4 eV (S 2p3/2),

162.6 eV (S 2p1/2)

sulfur (S0):

164.0 eV (S 2p3/2),

165.2 eV (S 2p1/2)

sulfate (S+6 ):

168.8 eV (S 2p3/2),

170.0 eV (S 2p1/2)

MgO/rGO-S 0% 89.0% 11.0%

ZnO/rGO-S 77.7% 14.0% 8.3%

Fe2O3/rGO-S 80.7% 11.0% 8.3%
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